8,511 research outputs found

    The Electromigration Force in Metallic Bulk

    Full text link
    The voltage induced driving force on a migrating atom in a metallic system is discussed in the perspective of the Hellmann-Feynman force concept, local screening concepts and the linear-response approach. Since the force operator is well defined in quantum mechanics it appears to be only confusing to refer to the Hellmann-Feynman theorem in the context of electromigration. Local screening concepts are shown to be mainly of historical value. The physics involved is completely represented in ab initio local density treatments of dilute alloys and the implementation does not require additional precautions about screening, being typical for jellium treatments. The linear-response approach is shown to be a reliable guide in deciding about the two contributions to the driving force, the direct force and the wind force. Results are given for the wind valence for electromigration in a number of FCC and BCC metals, calculated using an {\it ab initio} KKR-Green's function description of a dilute alloy.Comment: 14 pages, 1 Postscript figur

    Low energy ion bombardment on c-Ge surfaces

    Get PDF
    Amorphous germanium thin films (25–60 Å) were prepared by low energy (500, 800 eV) bombardment of noble gas ions (Ne, Ar, Kr) on c-Ge(001). The films were examined by spectroscopic ellipsometry and analysed using linear regression analysis (LRA). The most probable composition of the damaged toplayer is that of void free amorphous germanium, comparable with those obtained by dc-magnetron sputtering. The results are in excellent agreement with Monte Carlo simulations of the transport of ions in matter (TRIM86)

    Ultrafast all-optical wavelength conversion in silicon-insulator waveguides by means of cross phase modulation using 300 femtosecond pulses

    Get PDF
    In this paper we report the ultrafast all-optical wavelength conversion in Silicon-on-Insulator (SOI) waveguides. We used a pump-probe setup with 300 femtosecond pulses to demonstrate large temporal phase-shifts, caused by the Kerr effect and free carrier generation. Large wavelength shifts of a 1683nm probe signal have been observed. The wavelength conversion, ranging from 10nm redshifts to 15nm blueshifts, depending on the time delay between the pump and probe pulses, is caused by the pump induced Cross Phase Modulation. Furthermore, an all-optical switching scheme using SOI microring resonators is discussed. These results enable ultrafast all-optical switching using SOI microring resonators

    Increasing weaning age of piglets from 4 to 7 weeks reduces stress, increases post-weaning feed intake but does not improve intestinal functionality

    Get PDF
    This study tested the hypothesis that late weaning and the availability of creep feed during the suckling period compared with early weaning, improves feed intake, decreases stress and improves the integrity of the intestinal tract. In this study with 160 piglets of 16 litters, late weaning at 7 weeks of age was compared with early weaning at 4 weeks, with or without creep feeding during the suckling period, on post-weaning feed intake, plasma cortisol (as an indicator of stress) and plasma intestinal fatty acid binding protein (I-FABP; a marker for mild intestinal injury) concentrations, intestinal morphology, intestinal (macro)molecular permeability and intestinal fluid absorption as indicators of small intestinal integrity. Post-weaning feed intake was similar in piglets weaned at 4 weeks and offered creep feed or not, but higher (P <0.001) in piglets weaned at 7 weeks with a higher (P <0.05) intake for piglets offered creep feed compared with piglets from whom creep feed was witheld. Plasma cortisol response at the day of weaning was lower in piglets weaned at 7 weeks compared with piglets weaned at 4 weeks, and creep feed did not affect cortisol concentration. Plasma I-FABP concentration was not affected by the age of weaning and creep feeding. Intestinal (macro)molecular permeability was not affected by the age of weaning and creep feeding. Both in uninfected and enterotoxigenic Escherichia coli-infected small intestinal segments net fluid absorption was not affected by the age of weaning or creep feeding. Creep feeding, but not the age of weaning, resulted in higher villi and increased crypt depth. In conclusion, weaning at 7 weeks of age in combination with creep feeding improves post-weaning feed intake and reduces weaning stress but does not improve functional characteristics of the small intestinal mucos

    Elliptical flux vortices in YBa2Cu3O7

    Get PDF
    The most energetically favorable vortex in YBa2Cu3O7 forms perpendicular to an anisotropic plane. This vortex is elliptical in shape and is distinguished by an effective interchange of London penetration depths from one axis of the ellipse to another. By generalizing qualitatively from the isotropic to the anisotropic case, we suggest that the flux flow resistivity for the vortex that forms perpendicular to an anistropic plane should have a preferred direction. Similar reasoning indicates that the Kosterlitz-Thouless transition temperature for a vortex mediated transition should be lower if the vortex is elliptical in shape

    Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene

    Get PDF
    From in vitro experiments it is known that human endothelial cells show poor adhesion to hydrophobic polymers. The hydrophobicity of vascular prostheses manufactured from Teflon® or Dacron® may be the reason why endothelialization of these grafts does not occur after implantation in humans. We modified films of polytetrafluoroethylene (Teflon®) by nitrogen plasma and oxygen plasma treatments to make the surfaces more hydrophilic. Depending on the plasma exposure time, modified polytetrafluoroethylene surfaces showed water-contact angles of 15–58°, versus 96° for unmodified polytetrafluoroethylene. ESCA measurements revealed incorporation of both nitrogen- and oxygen-containing groups into the polytetrafluoroethylene surfaces, dependent on the plasma composition and exposure time. The thickness of the modified surface layer was ~1 nm. The adhesion of cultured human endothelial cells from 20% human serum-containing culture medium to modified polytetrafluoroethylene surfaces with contact angles of 20–45° led to the formation of a monolayer of cells, which was similar to the one formed on tissue culture polystyrene, the reference surface. This was not the case when endothelial cells were seeded upon unmodified polytetrafluoroethylene. Surface-modified expanded polytetrafluoroethylene prosthesis material (GORE TEX® soft tissue) also showed adhesion of endothelial cells comparable to cell adhesion to the reference surface. The amounts of serum proteins, including fibronectin, adsorbed from serumcontaining medium to modified polytetrafluoroethylene surfaces were larger than those adsorbed to unmodified polytetrafluoroethylene. Moreover, the modified surfaces probably allow the exchange of adsorbed serum proteins with cellular fibronectin

    ON TWO-POINT RESOLUTION OF IMAGING SYSTEMS

    Get PDF
    In this paper a new criterion is proposed for optical two-point resolution, applicable to coherent, incoherent, and partially coherent imaging. Unlike classical resolution criteria, such as Rayleigh's, the new criterion takes account of the presence of errors in the observed intensity distributions. Based on a parameter estimation approach, it shows how the resolvability of the imaged point sources depends on these errors. Additionally, a test for the resolvability of the point sources from a given set of observations is presented. Moreover, a procedure is proposed for the computation of the errors having minimum energy among all errors undermining the resolution. The results presented include, as a special case, earlier results on two-point resolution of strictly incoherent imaging systems

    Ultrafast all-optical wavelength conversion in silicon waveguides using femtosecond pump-probe pulses

    Get PDF
    Experimental results on ultrafast all-optical wavelength conversion in silicon-on-insulator waveguides are presented. Red and blue shifts of 10nm have been observed in femtosecond pump-probe experiments. Alloptical switching and the importance of waveguide dispersion are discussed

    Dependence of endothelial cell growth on substrate-bound fibronectin

    Get PDF
    A better understanding of the mechanism of adhesion, spreading and proliferation of human endothelial cells (HEC) on polymeric surfaces may lead to the development of vascular prostheses which allow the formation of an endothelial lining on the luminal surface. In the present investigation the interaction of HEC with polyethylene precoated with monoclonal antibodies directed against HEC membrane antigens and against extracellular matrix compounds was studied. F(ab¿)2 fragments of a monoclonal antibody, directed against an endothelial cell membrane antigen, and F(ab')2 fragments of a monoclonal antibody, directed against cellular fibronectin, were also included in this study. Preadsorption of these antibodies and F(ab')2 fragments, including mixtures of antibodies and mixtures of F(ab')2 fragments, resulted in cell adhesion and spreading as well as moderate cell proliferation (or no proliferation) for several days. However, a good proliferation of HEC was only observed on polyethylene precoated with fibronectin or CLB-HEC-FN-140 (directed against fibronectin). These results strongly suggest that fibronectin, bound to a solid substrate, provides a biochemical signal necessary for the proliferation of HEC. The initial proliferation of HEC on other preadsorbed antibodies or F(ab')2 fragments may be explained by the fact that suspended HEC, used for cell seeding, still possess cell membrane-bound fibronectin
    corecore