9,362 research outputs found

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=∞U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=∞d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=∞d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Fuzzy Modeling and Parallel Distributed Compensation for Aircraft Flight Control from Simulated Flight Data

    Get PDF
    A method is described that combines fuzzy system identification techniques with Parallel Distributed Compensation (PDC) to develop nonlinear control methods for aircraft using minimal a priori knowledge, as part of NASAs Learn-to-Fly initiative. A fuzzy model was generated with simulated flight data, and consisted of a weighted average of multiple linear time invariant state-space cells having parameters estimated using the equation-error approach and a least-squares estimator. A compensator was designed for each subsystem using Linear Matrix Inequalities (LMI) to guarantee closed-loop stability and performance requirements. This approach is demonstrated using simulated flight data to automatically develop a fuzzy model and design control laws for a simplified longitudinal approximation of the F-16 nonlinear flight dynamics simulation. Results include a comparison of flight data with the estimated fuzzy models and simulations that illustrate the feasibility and utility of the combined fuzzy modeling and control approach

    Effect of Particle-Hole Asymmetry on the Mott-Hubbard Metal-Insulator Transition

    Full text link
    The Mott-Hubbard metal-insulator transition is one of the most important problems in correlated electron systems. In the past decade, much progress has been made on examining a particle-hole symmetric form of the transition in the Hubbard model with dynamical mean field theory where it was found that the electronic self energy develops a pole at the transition. We examine the particle-hole asymmetric metal-insulator transition in the Falicov-Kimball model, and find that a number of features change when the noninteracting density of states has a finite bandwidth. Since, generically particle-hole symmetry is broken in real materials, our results have an impact on understanding the metal-insulator transition in real materials.Comment: 5 pages, 3 figure

    Recent free-flight boundary-surface aerody- namic noise measurements

    Get PDF
    Free-flight boundary-layer aerodynamic noise measurement

    Slow-string limit and "antiferromagnetic" state in AdS/CFT

    Full text link
    We discuss a slow-moving limit of a rigid circular equal-spin solution on R x S^3. We suggest that the solution with the winding number equal to the total spin approximates the quantum string state dual to the maximal-dimension ``antiferromagnetic'' state of the SU(2) spin chain on the gauge theory side. An expansion of the string action near this solution leads to a weakly coupled system of a sine-Gordon model and a free field. We show that a similar effective Hamiltonian appears in a certain continuum limit from the half-filled Hubbard model that was recently suggested to describe the all-order dilatation operator of the dual gauge theory in the SU(2) sector. We also discuss some other slow-string solutions with one spin component in AdS_5 and one in S^5.Comment: 32 pages, Latex v2: one footnote and references adde

    Finding the signal in the noise: Could social media be utilized for early hospital notification of multiple casualty events?

    Get PDF
    IntroductionDelayed notification and lack of early information hinder timely hospital based activations in large scale multiple casualty events. We hypothesized that Twitter real-time data would produce a unique and reproducible signal within minutes of multiple casualty events and we investigated the timing of the signal compared with other hospital disaster notification mechanisms.MethodsUsing disaster specific search terms, all relevant tweets from the event to 7 days post-event were analyzed for 5 recent US based multiple casualty events (Boston Bombing [BB], SF Plane Crash [SF], Napa Earthquake [NE], Sandy Hook [SH], and Marysville Shooting [MV]). Quantitative and qualitative analysis of tweet utilization were compared across events.ResultsOver 3.8 million tweets were analyzed (SH 1.8 m, BB 1.1m, SF 430k, MV 250k, NE 205k). Peak tweets per min ranged from 209-3326. The mean followers per tweeter ranged from 3382-9992 across events. Retweets were tweeted a mean of 82-564 times per event. Tweets occurred very rapidly for all events (<2 mins) and represented 1% of the total event specific tweets in a median of 13 minutes of the first 911 calls. A 200 tweets/min threshold was reached fastest with NE (2 min), BB (7 min), and SF (18 mins). If this threshold was utilized as a signaling mechanism to place local hospitals on standby for possible large scale events, in all case studies, this signal would have preceded patient arrival. Importantly, this threshold for signaling would also have preceded traditional disaster notification mechanisms in SF, NE, and simultaneous with BB and MV.ConclusionsSocial media data has demonstrated that this mechanism is a powerful, predictable, and potentially important resource for optimizing disaster response. Further investigated is warranted to assess the utility of prospective signally thresholds for hospital based activation

    A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors

    Full text link
    In the framework of a two-band model, we study the phase separation regime of different kinds of strongly correlated charge carriers as a function of the energy splitting between the two sets of bands. The narrow (wide) band simulates the more localized (more delocalized) type of charge carriers. By assuming that the internal chemical pressure on the CuO2_2 layer due to interlayer mismatch controls the energy splitting between the two sets of states, the theoretical predictions are able to reproduce the regime of phase separation at doping higher than 1/8 in the experimental pressure-doping-TcT_c phase diagram of cuprates at large microstrain as it appears in overoxygenated La2_2CuO4_4.Comment: 8 pages, 5 figures, submitted to Phys. Rev.

    A Velocity-based Moving Mesh Virtual Element Method

    Get PDF
    We present a velocity-based moving mesh virtual element method for the numerical solution of PDEs involving moving boundaries. The virtual element method is used for computing both the mesh velocity and a conservative Arbitrary Lagrangian-Eulerian solution transfer on general polygonal meshes. The approach extends the linear finite element method to polygonal mesh structures, achieving the same degree of accuracy. In the context of moving meshes, a major advantage of the virtual element approach is the ease with which nodes can be inserted on mesh edges. Demonstrations of node insertion techniques are presented to show that moving polygonal meshes can be simply adapted for situations where a boundary encounters a solid object or another moving boundary, without reduction in degree of accuracy
    • …
    corecore