66 research outputs found
Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics
Cavity optomechanical phenomena, such as cooling, amplification or
optomechanically induced transparency, emerge due to a strong imbalance in the
dissipation rates of the parametrically coupled electromagnetic and mechanical
resonators. Here we analyze the reversed dissipation regime where the
mechanical energy relaxation rate exceeds the energy decay rate of the
electromagnetic cavity. We demonstrate that this regime allows for
mechanically-induced amplification (or cooling) of the electromagnetic mode.
Gain, bandwidth, and added noise of this electromagnetic amplifier are derived
and compared to amplification in the normal dissipation regime. In addition, we
analyze the parametric instability, i.e. optomechanical Brillouin lasing, and
contrast it to conventional optomechanical phonon lasing. Finally, we propose
an experimental scheme that realizes the reversed dissipation regime using
parametric coupling and optomechanical cooling with a second electromagnetic
mode enabling quantum-limited amplification. Recent advances in high-Q
superconducting microwave resonators make the reversed dissipation regime
experimentally realizable.Comment: 5+3 pages, 5 figures, 1 tabl
Level attraction in a microwave optomechanical circuit
Level repulsion - the opening of a gap between two degenerate modes due to
coupling - is ubiquitous anywhere from solid state theory to quantum chemistry.
In contrast, if one mode has negative energy, the mode frequencies attract
instead. They converge and develop imaginary components, leading to an
instability; an exceptional point marks the transition. This, however, only
occurs if the dissipation rates of the two modes are comparable. Here we expose
a theoretical framework for the general phenomenon and realize it
experimentally through engineered dissipation in a multimode superconducting
microwave optomechanical circuit. Level attraction is observed for a mechanical
oscillator and a superconducting microwave cavity, while an auxiliary cavity is
used for sideband cooling. Two exceptional points are demonstrated that could
be exploited for their topological properties.Comment: 5 pages, 4 figures; includes Supplementary informatio
Rare earth spin ensemble magnetically coupled to a superconducting resonator
Interfacing superconducting quantum processors, working in the GHz frequency
range, with optical quantum networks and atomic qubits is a challenging task
for the implementation of distributed quantum information processing as well as
for quantum communication. Using spin ensembles of rare earth ions provide an
excellent opportunity to bridge microwave and optical domains at the quantum
level. In this letter, we demonstrate magnetic coupling of Er spins
doped in YSiO crystal to a high-Q coplanar superconducting
resonator.Comment: 5 pages, 3 figure
A V-shape superconducting artificial atom based on two inductively coupled transmons
Circuit quantum electrodynamics systems are typically built from resonators
and two-level artificial atoms, but the use of multi-level artificial atoms
instead can enable promising applications in quantum technology. Here we
present an implementation of a Josephson junction circuit dedicated to operate
as a V-shape artificial atom. Based on a concept of two internal degrees of
freedom, the device consists of two transmon qubits coupled by an inductance.
The Josephson nonlinearity introduces a strong diagonal coupling between the
two degrees of freedom that finds applications in quantum non-demolition
readout schemes, and in the realization of microwave cross-Kerr media based on
superconducting circuits.Comment: 5 pages, 3 figure
Acenaphthenoannulation Induced by the Dual Lewis Acidity of Alumina
We have discovered a dual (i. e., soft and hard) Lewis acidity of alumina that enables rapid one-pot π-extension through the activation of terminal alkynes followed by C−F activation. The tandem reaction introduces an acenaphthene fragment – an essential moiety of geodesic polyarenes. This reaction provides quick access to elusive non-alternant polyarenes such as π-extended buckybowls and helicenes through three-point annulation of the 1-(2-ethynyl-6-fluorophenyl)naphthalene moiety. The versatility of the developed method was demonstrated by the synthesis of unprecedented structural fragments of elusive geodesic graphene nanoribbons
Coherent frequency conversion in a superconducting artificial atom with two internal degrees of freedom
By adding a large inductance in a dc-SQUID phase qubit loop, one decouples
the junctions' dynamics and creates a superconducting artificial atom with two
internal degrees of freedom. In addition to the usual symmetric plasma mode
({\it s}-mode) which gives rise to the phase qubit, an anti-symmetric mode
({\it a}-mode) appears. These two modes can be described by two anharmonic
oscillators with eigenstates and for the {\it s}
and {\it a}-mode, respectively. We show that a strong nonlinear coupling
between the modes leads to a large energy splitting between states
and . Finally, coherent frequency
conversion is observed via free oscillations between the states
and
- …