1,064 research outputs found

    Out-of-phase oscillation between superfluid and thermal components for a trapped Bose condensate under oscillatory excitation

    Full text link
    The vortex nucleation and the emergence of quantum turbulence induced by oscillating magnetic fields, introduced by Henn E A L, et al. 2009 (Phys. Rev. A 79, 043619) and Henn E A L, et al. 2009 (Phys. Rev. Lett. 103, 045301), left a few open questions concerning the basic mechanisms causing those interesting phenomena. Here, we report the experimental observation of the slosh dynamics of a magnetically trapped 87^{87}Rb Bose-Einstein condensate (BEC) under the influence of a time-varying magnetic field. We observed a clear relative displacement in between the condensed and the thermal fraction center-of-mass. We have identified this relative counter move as an out-of-phase oscillation mode, which is able to produce ripples on the condensed/thermal fractions interface. The out-of-phase mode can be included as a possible mechanism involved in the vortex nucleation and further evolution when excited by time dependent magnetic fields.Comment: 5 pages, 5 figures, 25 reference

    Fast transform decoding of nonsystematic Reed-Solomon codes

    Get PDF
    A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips

    Photoassociative ionization of Na inside a storage ring

    Get PDF
    Motivated by recent interest in low dimensional arrays of atoms, we experimentally investigated the way cold collisional processes are affected by the geometry of the considered atomic sample. More specifically, we studied the case of photoassociative ionization (PAI) both in a storage ring where collision is more unidirectional in character and in a trap with clear undefinition of collision axis. First, creating a ring shaped trap (atomotron) we investigated two-color PAI dependence with intensity and polarization of a probing laser. The intensity dependence of the PAI rate was also measured in a magneto-optical trap presenting equivalent temperature and density conditions. Indeed, the results show that in the ring trap, the value of the PAI rate constant is much lower and does not show evidences of saturation, unlike in the case of the 3D-MOT. Cold atomic collisions in storage ring may represent new possibilities for study.Comment: 5 pages, 5 figures; Accepted by Optics Communicatio

    Injection locking of a low cost high power laser diode at 461 nm

    Get PDF
    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.Comment: 2nd corrected version (minor revisions); Manuscript accepted for publication in Review of Scientific Instruments; 5 pages, 6 figure

    Multidomain switching in the ferroelectric nanodots

    Full text link
    Controlling the polarization switching in the ferroelectric nanocrystals, nanowires and nanodots has an inherent specificity related to the emergence of depolarization field that is associated with the spontaneous polarization. This field splits the finite-size ferroelectric sample into polarization domains. Here, based on 3D numerical simulations, we study the formation of 180∘^{\circ } polarization domains in a nanoplatelet, made of uniaxial ferroelectric material, and show that in addition to the polarized monodomain state, the multidomain structures, notably of stripe and cylindrical shapes, can arise and compete during the switching process. The multibit switching protocol between these configurations may be realized by temperature and field variations

    Route to turbulence in a trapped Bose-Einstein condensate

    Full text link
    We have studied a Bose-Einstein condensate of 87Rb^{87}Rb atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations.Comment: 6 pages, 3 figure

    Novel algorithms and high-performance cloud computing enable efficient fully quantum mechanical protein-ligand scoring

    Get PDF
    Ranking the binding of small molecules to protein receptors through physics-based computation remains challenging. Though inroads have been made using free energy methods, these fail when the underlying classical mechanical force fields are insufficient. In principle, a more accurate approach is provided by quantum mechanical density functional theory (DFT) scoring, but even with approximations, this has yet to become practical on drug discovery-relevant timescales and resources. Here, we describe how to overcome this barrier using algorithms for DFT calculations that scale on widely available cloud architectures, enabling full density functional theory, without approximations, to be applied to protein-ligand complexes with approximately 2500 atoms in tens of minutes. Applying this to a realistic example of 22 ligands binding to MCL1 reveals that density functional scoring outperforms classical free energy perturbation theory for this system. This raises the possibility of broadly applying fully quantum mechanical scoring to real-world drug discovery pipelines.Comment: 15 pages, 5 figures, 1 tabl

    Novel algorithms and high-performance cloud computing enable efficient fully quantum mechanical protein-ligand scoring

    Get PDF
    Ranking the binding of small molecules to protein receptors through physics-based computation remains challenging. Though inroads have been made using free energy methods, these fail when the underlying classical mechanical force fields are insufficient. In principle, a more accurate approach is provided by quantum mechanical density functional theory (DFT) scoring, but even with approximations, this has yet to become practical on drug discovery-relevant timescales and resources. Here, we describe how to overcome this barrier using algorithms for DFT calculations that scale on widely available cloud architectures, enabling full density functional theory, without approximations, to be applied to protein-ligand complexes with approximately 2500 atoms in tens of minutes. Applying this to a realistic example of 22 ligands binding to MCL1 reveals that density functional scoring outperforms classical free energy perturbation theory for this system. This raises the possibility of broadly applying fully quantum mechanical scoring to real-world drug discovery pipelines
    • …
    corecore