131 research outputs found
An integrated approach project for the revaluation of a traditional sourdough bread production chain
The influence of organic and conventional farming systems on the performance of a panel of old and modern Italian bread wheat varieties has been evaluated, with the aim to individuate an agronomic protocol suitable for the production of a sourdough bread traditionally prepared in a hill zone of Emilia-Romagna. The agronomic and technological characterisation of the wheat samples obtained in organic and conventional farming conditions has been done and the sensorial qualities of the sourdough bread obtained have been evaluated
Effect of the nud gene on grain yield in barley
Naked barleys are less yielding than the hulled ones while the reason for this difference has not beendefinitely clarified. To investigate the effect of the nud gene on yield, a barley doubled haploid (DH, Proctor
7Nudinka) population was initially tested in three environments and a QTL study was run on the entire populationas well as on two nud/NUD DH subpopulations. Among the agronomic traits studied, a QTL effect was found atnud locus on chromosome 7H only for yield and thousand grain weight (TGW), while a second QTL was found on6H, although contributed by the naked parent. Other QTLs for TGW were identified on 2H, 3H and 5H. Most QTLsfound in the entire population were confirmed by the study on the two groups. No interaction was observed betweenQTLs. To provide a more accurate evaluation of the effects of the nud gene upon grain yield, its components andother agronomic traits, sixteen naked advanced backcross (AB) BC5F2 lines in the hulled background of cultivarArda were prepared and evaluated in a replicated yield trial for two years. The only differences found betweenAB lines and Arda in grain yield and TGW were due to hull weight (11.97% of kernel weight). No differences wereobserved in other traits such as grains/m2, grains per spike, plant height, heading date and mildew resistance. Inconclusion, we think to have clarified that the effect of the nud gene on yield is due to hulls, and we did not findany pleiotropic effect of nud on other traits. This suggests, together with the finding of a QTL contributed by thenaked parent, that there is a great potential to improve naked barley up to the yield levels of hulled barley
The phase diagram of quantum systems: Heisenberg antiferromagnets
A novel approach for studying phase transitions in systems with quantum
degrees of freedom is discussed. Starting from the microscopic hamiltonian of a
quantum model, we first derive a set of exact differential equations for the
free energy and the correlation functions describing the effects of
fluctuations on the thermodynamics of the system. These equations reproduce the
full renormalization group structure in the neighborhood of a critical point
keeping, at the same time, full information on the non universal properties of
the model. As a concrete application we investigate the phase diagram of a
Heisenberg antiferromagnet in a staggered external magnetic field. At long
wavelengths the known relationship to the Quantum Non Linear Sigma Model
naturally emerges from our approach. By representing the two point function in
an approximate analytical form, we obtain a closed partial differential
equation which is then solved numerically. The results in three dimensions are
in good agreement with available Quantum Monte Carlo simulations and series
expansions. More refined approximations to the general framework presented here
and few applications to other models are briefly discussed.Comment: 17 pages, 7 figure
Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group
The Hierarchical Reference Theory (HRT) of fluids is a general framework for
the description of phase transitions in microscopic models of classical and
quantum statistical physics. The foundations of HRT are briefly reviewed in a
self-consistent formulation which includes both the original sharp cut-off
procedure and the smooth cut-off implementation, which has been recently
investigated. The critical properties of HRT are summarized, together with the
behavior of the theory at first order phase transitions. However, the emphasis
of this presentation is on the close relationship between HRT and non
perturbative renormalization group methods, as well as on recent
generalizations of HRT to microscopic models of interest in soft matter and
quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic
Roles of seed components in the growth of barley seedlings under salt stress
The cereal endosperm provides nutrients for seedling growth. The effects of seed components in seedling establishments under salt stress are, however, not yet fully explored. In this study, 60 barley recombinant inbred lines derived from Lewis × Karl cross were grown in four different environments, and the seed contents of starch, total soluble protein, phytate, total phenolics, total flavonoids and total inorganic phosphorus were determined in the harvested grains. Seeds of each line from the four environments were also assayed for seedling growth under saline treatments from 0 to 400 mM NaCl. Root and shoot lengths after 7 days decreased with increasing salt concentration. Correlations between seed components and either root or shoot length were established across the four seed sources. ANOVA showed a significant environment/source effect for both seed components and seedling growth, although the latter was less affected by the seed-production environment. Modeling seedling length across multiple salinities for each seed source showed that the environment with the most saline-tolerant root-growth curve was that associated the highest seed phosphorus content. Correlations between seed components and seedling growth traits highlighted phytate and total inorganic phosphorus as key components for seedling growth under moderate salinities. Seed phytate contents benefited seedling growth, even at high salinities, suggesting an additional role for this seed component under stressful growth conditions, possibly linked to its potential function as an osmolyte source
Non linear sigma models and quantum spin systems
Microscopic models of quantum antiferromagnets are investigated on the basis
of a mapping onto effective low energy hamiltonians. Lattice effects are
carefully taken into account and their role is discussed. We show that the
presence of an external staggered magnetic field modifies in a non trivial way
the usual mapping onto the non linear sigma model, leading to the appearance of
new terms, neglected in previous works. Our analysis is compared with Lanczos
diagonalizations of S=1 Heisenberg chains in a staggered field, confirming the
validity of the single mode approximation for the evaluation of the dynamical
structure factor. The results are relevant for the interpretation of
experiments in quasi-one dimensional compounds. Microscopic realizations of
SU(4) spin chains are also discussed in the framework of spin-orbital lattice
systems. The low energy physics is shown to be described by sigma models with
topological angle in one dimension. This mapping strongly suggests
that the one dimensional CP model (with ) undergoes a second
order phase transition as a function of the coupling.Comment: 11 pages, 5 figures, Corrected typos. To appear in Phys. Rev.
Characterizing barley seed macro- and micro-nutrients under multiple environmental conditions
Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds
Differential incidence of the lemma on seed germination among different Paspalum dilatatum genotypes
- …