2,493 research outputs found

    Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination

    Get PDF
    The food and drink manufacturing industry is constantly seeking for alternative sanitation and disinfection systems that may achieve the same antimicrobial efficiency of conventional chemical sanitisers and at the same time be convenient in terms of energy and water savings. A candidate technology for this purpose is the use of light in combination with photosensitisers (PS) to generate a bioactive effect against microbial agents in a process defined as photodynamic inactivation (PDI). This technology can be applied to the food processing of different food matrices to reduce the microbial load of foodborne pathogens such as bacteria, fungi, viruses and protozoa. Also, the PDI can be exploited to increase the shelf-life period of food by inactivation of spoiling microbes. This review analyses new developments in the last five years for PDI systems applied to the food decontamination from foodborne pathogens. The photosensitisation mechanisms and methods are reported to introduce the applied technology against microbial targets in food matrices. Recent blue light emitting diodes (LED) lamp systems for the PDI mediated by endogenous PS are discussed as well PDI technologies with the use of exogenous PS from plant sources such as curcumin and porphyrin-based molecules. The updated overview of the most recent developments in the PDI technology both in wavelengths and employed PS will provide further points of analysis for the advancement of the research on new competitive and effective disinfection systems in the food industry

    Coherent structures in fully-developed pipe turbulence

    Get PDF
    A turbulent mean profile for pipe flow is prescribed which closely matches experimental observations. The nature of perturbations superimposed upon this profile is then considered. Optimal growth calculations predict two distinct classes of structures, clearly associated with near-wall and large-scale structures. Quantitative correspondence of the spanwise wavelength of wall-structures with experimental observations is very good. The response to harmonic forcing is also considered, and the linear growth tested with direct numerical simulation of forced turbulence. Despite the very simple eddy viscosity assumption, this linear approach predicts well the surprisingly large growth of outer-scale modes in the bulk flow. Un profil moyen turbulent est prescrit dans une conduite cylindrique, en adequation avec les observations experimentales. Nous considerons ensuite la nature des perturbations a cet ecoulement synthetique. Le calcul des croissances optimales predit deux types de structures, associees respectivement aux structures de proche-paroi et de grande echelle. Un excellent accord quantitatif est trouve avec les resultats experimentaux quant a la longueur d'onde transversale. La reponse harmonique est egalement etudiee, et la croissance lineaire observee comparee a des simulations numeriques directes de turbulence forcee. Malgre de l'hypothese simple de type `Eddy viscosity', cette approche lineaire predit efficacement la croissance spectaculaire des modes de grande echelle au coeur de l'ecoulement.Comment: 5 pages; Congres Francais de Mecanique, Marseille (2009

    Evaluation of the energy utilization index in sheep milk cooling systems

    Get PDF
    The energy consumption of sheep milk cooling systems (MCSs) was quantified in this study to provide original information filling a literature gap on the impact of sheep milk cooling on the energy and economic balance in dairy farms. Performance and energy monitoring tests were conducted simultaneously on 22 MCSs in Sardinia (Italy). The results determined the cooling time as a function of the performance class and number of milkings. The Energy Utilization Index (EUI) was applied to measure the energy required to cool down the milk and estimate the incidence on its price. The average EUI was 1.76 kWh 100 L−1 for two-milkings and 2.43 kWh 100 L−1 for four-milkings MCSs, whereas the CO2 emissions ranged from 998 to 1378 g CO2 100 L−1 for two- and four-milkings MCSs, respectively. The estimated energy consumption for the storage of refrigerated sheep milk was 0.12 kWh 100 L−1. The malfunctioning MCSs averagely consumed 31% more energy than regular systems. The energy cost for cooling accounted for 0.61% on the current sheep milk price in Italy. Based on the analysis, the reported EUI values can be used as a preliminary indicator of the regular operation of MCSs

    A test of first order scaling in Nf=2 QCD

    Get PDF
    We complete our analysis of Nf=2 QCD based on the lattice staggered fermion formulation. Using a series of Monte Carlo simulations at fixed (amq*Ls^yh) one is able to test the universality class with given critical exponent yh. This strategy has been used to test the O(4) universality class and it has been presented at the previous Lattice conferences. No agreement was found with simulations in the mass range amq=[0.01335,0.15] using lattices with Ls=16 up to 32 and Lt=4. With the same strategy, we now investigate the possibility of a first order transition using a new set of Monte Carlo data corresponding to yh=3 in the same mass and volume range as the one used for O(4). A substantial agreement is observed both in the specific heat scaling and in the scaling of the chiral condensate, while the chiral susceptibilities still presents visible deviation from scaling in the mass range explored.Comment: 5 pages, 6 figures, Presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, German

    On the phase diagram of the Higgs SU(2) model

    Full text link
    The Higgs SU(2) model with fixed Higgs length is usually believed to have two different phases at high gauge coupling (\beta), separated by a line of first order transitions but not distinuguished by any typical symmetry associated with a local order parameter, as first proved by Fradkin and Shenker. We show that in regions of the parameter space where it is usually supposed to be a first order phase transition only a smooth crossover is in fact present.Comment: 6 pages, 6 figures. Talk presented at The XXVI International Symposium on Lattice Field Theory, July 14 - 19, 2008 - Williamsburg, Virginia, US

    Two flavor QCD and confinement - II

    Full text link
    This paper is part of a program of investigation of the chiral transition in Nf=2 QCD, started in Phys.Rev.D72:114510,2005. Progress is reported on the understanding of some possible systematic errors. A direct test of first order scaling is presented.Comment: 7 pages, 6 figure

    A test of first order scaling in Nf =2 QCD: a progress report

    Full text link
    We present the status of our analysis on the order of the finite temperature transition in QCD with two flavors of degenerate fermions. Our new simulations on large lattices support the hypothesis of the first order nature of the transition, showing a preliminary two state signal. We will discuss the implications and the next steps in our analysis.Comment: 6 pages, 4 figures. Talk presented at The XXVI International Symposium on Lattice Field Theory, July 14 - 19, 2008 - Williamsburg, Virginia, US

    Agricultural sustainability estimation of the European photovoltaic greenhouses

    Get PDF
    The integration of the photovoltaic (PV) energy in the greenhouse farm has raised concerns on the agricultural sustainability of this specific agrosystem in terms of crop planning and management, due to the shading cast by the PV panels on the canopy. The PV greenhouse (PVG) can be classified on the basis of the PV cover ratio (PVR), that is the ratio of the projected area of PV panels to the ground and the total greenhouse area. In this paper, we estimated the yield of 14 greenhouse horticultural and floricultural crops inside four commercial PVG types spread in southern Europe, with PVR ranging from 25 to 100%. The aim of the work is to identify the PVG types suitable for the cultivation of the considered species, based on the best trade-off between PV shading and crop production. The daily light integral (DLI) was used to compare the light scenarios inside the PVGs to the crop light requirements, and estimate the potential yield. The structures with a PVR of 25% were compatible with the cultivation of all considered species, including the high light demanding ones (tomato, cucumber, sweet pepper), with an estimated negligible or limited yield reduction (below 25%). The medium light species (such as asparagus) with an optimal DLI lower than 17 mol m−2 d−1 and low light crops can be cultivated inside PVGs with a PVR up to 60%. Only low light demanding floricultural species with an optimal DLI lower than 10 mol m−2 d−1, such as poinsettia, kalanchoe and dracaena, were compatible inside PVGs with a PVR up to 100%. Innovative cropping systems should be considered to overcome the penalizing light scenarios of the PVGs with high PVR, also implementing LED supplementary lighting. This paper contributes to identify the sustainable PVG types for the chosen species and the alternative crop managements in terms of transplantation period and precision agriculture techniques, aimed at increasing the crop productivity and adaptability inside the PVG agrosystems

    Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce

    Get PDF
    The photovoltaic (PV) greenhouses are closed agrivoltaic (CA) systems that allow the production of energy and food on the same land, but may result in a yield reduction when the shading of the PV panels is excessive. Adopting innovative cropping systems can increase the yield of the CA area, generating a more productive and sustainable agrosystem. In this case study we quantified the increase of land productivity derived from the integration of an experimental vertical farm (VF) for baby leaf lettuce inside a pre-existing commercial CA. The mixed system increased the yield by 13 times compared to the CA and the average LER was 1.31, but only 12 % of the energy consumption was covered by the CA energy. To achieve the energy self-sufficiency and avoid the related CO2 emissions, the VF area should not exceed 7–18 % of the CA area, depending on the PV energy yield and the daily light integral (DLI) of the LED lighting, meaning a land consumption from 5 to 14 times higher than the VF area. The support of the PV energy was essential for the profitability of the VFCA. Design features and solutions were proposed to increase the agronomic and economic sustainability of the VFCA. The VFs can be considered a possible answer for the reconversion of the actual underutilized CAs with high PV cover ratios into productive and efficient cropping systems, but a trade-off between energy production and land consumption should be identified to ensure an acceptable environmental sustainability of the mixed system

    Dissipative effects on the sustainment of a magnetorotational dynamo in Keplerian shear flow

    Get PDF
    The magnetorotational (MRI) dynamo has long been considered one of the possible drivers of turbulent angular momentum transport in astrophysical accretion disks. However, various numerical results suggest that this dynamo may be difficult to excite in the astrophysically relevant regime of magnetic Prandtl number (Pm) significantly smaller than unity, for reasons currently not well understood. The aim of this article is to present the first results of an ongoing numerical investigation of the role of both linear and nonlinear dissipative effects in this problem. Combining a parametric exploration and an energy analysis of incompressible nonlinear MRI dynamo cycles representative of the transitional dynamics in large aspect ratio shearing boxes, we find that turbulent magnetic diffusion makes the excitation and sustainment of this dynamo at moderate magnetic Reynolds number (Rm) increasingly difficult for decreasing Pm. This results in an increase in the critical Rm of the dynamo for increasing kinematic Reynolds number (Re), in agreement with earlier numerical results. Given its very generic nature, we argue that turbulent magnetic diffusion could be an important determinant of MRI dynamo excitation in disks, and may also limit the efficiency of angular momentum transport by MRI turbulence in low Pm regimes.Comment: 7 pages, 6 figure
    • …
    corecore