7,116 research outputs found

    Revealing frame dynamics through comparing associative fields in diachrony

    Get PDF
    The article shows that the changes of an associative field in diachrony can somewhat schematically, but quite accurately reflect the dynamics of the corresponding frame over time. The undertaken comparative analysis of associative fields of stimuli ‘napitok’ (drink) and ‘pit’yo’ (drink(ing)) - as of 1988-1997 (the data of “Russian associative dictionary”) and 2013-2014 (the results of the author experiment) - helps to develop the model of the frame “drink” - to the extent of slots actualized through associative reactions - and reveals some changes in its structure. Ascertained dynamics implies variation in the relevancy of almost all slots. The revealed trends also reflect some harmonization of this frame with its Western analoguesye

    Can an underestimation of opacity explain B-type pulsators in the SMC?

    Full text link
    Slowly Pulsating B and β\beta Cephei are κ\kappa mechanism driven pulsating B stars. That κ\kappa mechanism works since a peak in the opacity due to a high number of atomic transitions from iron-group elements occurs in the area of logT5.3\log T \approx 5.3. Theoretical results predict very few SPBs and no β\beta Cep to be encountered in low metallicity environments such as the Small Magellanic Cloud. However recent variability surveys of B stars in the SMC reported the detection of a significant number of SPB and β\beta Cep candidates. Though the iron content plays a major role in the excitation of β\beta Cep and SPB pulsations, the chemical mixture representative of the SMC B stars such as recently derived does not leave room for a significant increase of the iron abundance in these stars. Whilst abundance of iron-group elements seems reliable, is the opacity in the iron-group elements bump underestimated? We determine how the opacity profile in B-type stars should change to excite SPB and β\beta Cep pulsations in early-type stars of the SMC.Comment: 5 pages, 7 figures, to appear under electronic form in : Proceedings of the 4th HELAS International Conference: Seismological Challenges for Stellar Structur

    Three-Flavor Partially Quenched Chiral Perturbation Theory at NNLO for Meson Masses and Decay Constants

    Full text link
    We discuss Partially Quenched Chiral Perturbation Theory (PQχ\chiPT) and possible fitting strategies to Lattice QCD data at next-to-next-to-leading order (NNLO) in the mesonic sector. We also present a complete calculation of the masses of the charged pseudoscalar mesons, in the supersymmetric formulation of PQχ\chiPT. Explicit analytical results are given for up to three nondegenerate sea quark flavors, along with the previously unpublished expression for the pseudoscalar meson decay constant for three nondegenerate sea quark flavors. The numerical analysis in this paper demonstrates that the corrections at NNLO are sizable, as expected from earlier work.Comment: 31 pages, numerical discussion extended including convergence NLO to NNL

    Stereotypical risks and threats in the youth’s opinion (diachronic comparative aspect)

    Get PDF
    The paper reveals the structure of associative fields of words-stimuli "danger", "risk", "threat", fixed in 1988-90 (the materials of "Russian Association Dictionary") and in 2015 (the results of authors’ associative experiment). The obtained results demonstrate the structural stability of these fields diachronically on the one hand and explicit redistribution of "association vectors" within them on the other on

    Large NcN_c QCD at non-zero chemical potential

    Full text link
    The general issue of large NcN_c QCD at nonzero chemical potential is considered with a focus on understanding the difference between large NcN_c QCD with an isospin chemical potential and large NcN_c QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to `t Hooft's analysis at μ=0\mu=0 implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus 1/Nc1/N_c corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds mπ/2m_\pi/2; associated with this transition there is breakdown of the 1/Nc1/N_c expansion--in the pion condensed phase there is a distinct 1/Nc1/N_c expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open

    Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory

    Get PDF
    We introduce photons in Partially Quenched Chiral Perturbation Theory and calculate the resulting electromagnetic loop-corrections at NLO for the charged meson masses and decay constants. We also present a numerical analysis to indicate the size of the different corrections. We show that several phenomenologically relevant quantities can be calculated consistently with photons which couple only to the valence quarks, allowing the use of gluon configurations produced without dynamical photons.Comment: 11 page

    Optical characterization of marine phytoplankton assemblages within surface waters of the western Arctic Ocean.

    Get PDF
    An extensive data set of measurements within the Chukchi and Beaufort Seas is used to characterize the optical properties of seawater associated with different phytoplankton communities. Hierarchical cluster analysis of diagnostic pigment concentrations partitioned stations into four distinct surface phytoplankton communities based on taxonomic composition and average cell size. Concurrent optical measurements of spectral absorption and backscattering coefficients and remote-sensing reflectance were used to characterize the magnitudes and spectral shapes of seawater optical properties associated with each phytoplankton assemblage. The results demonstrate measurable differences among communities in the average spectral shapes of the phytoplankton absorption coefficient. Similar or smaller differences were also observed in the spectral shapes of nonphytoplankton absorption coefficients and the particulate backscattering coefficient. Phytoplankton on average, however, contributed only 25% or less to the total absorption coefficient of seawater. Our analyses indicate that the interplay between the magnitudes and relative contributions of all optically significant constituents generally dampens any influence of varying phytoplankton absorption spectral shapes on the total absorption coefficient, yet there is still a marked discrimination observed in the spectral shape of the ratio of the total backscattering to total absorption coefficient and remote-sensing reflectance among the phytoplankton assemblages. These spectral variations arise mainly from differences in the bio-optical environment in which specific communities were found, as opposed to differences in the spectral shapes of phytoplankton optical properties per se. These results suggest potential approaches for the development of algorithms to assess phytoplankton community composition from measurements of seawater optical properties in western Arctic waters

    Staggered Chiral Perturbation Theory and the Fourth-Root Trick

    Full text link
    Staggered chiral perturbation theory (schpt) takes into account the "fourth-root trick" for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular the restoration of taste symmetry, schpt then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a "mixed" theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of schpt, so that a variety of possible new routes for testing this validity are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and less tentative discussion in several places; corresponds to published versio
    corecore