5,031 research outputs found

    Massive Scaling Limit of beta-Deformed Matrix Model of Selberg Type

    Full text link
    We consider a series of massive scaling limits m_1 -> infty, q -> 0, lim m_1 q = Lambda_{3} followed by m_4 -> infty, Lambda_{3} -> 0, lim m_4 Lambda_{3} = (Lambda_2)^2 of the beta-deformed matrix model of Selberg type (N_c=2, N_f=4) which reduce the number of flavours to N_f=3 and subsequently to N_f=2. This keeps the other parameters of the model finite, which include n=N_L and N=n+N_R, namely, the size of the matrix and the "filling fraction". Exploiting the method developed before, we generate instanton expansion with finite g_s, epsilon_{1,2} to check the Nekrasov coefficients (N_f =3,2 cases) to the lowest order. The limiting expressions provide integral representation of irregular conformal blocks which contains a 2d operator lim frac{1}{C(q)} : e^{(1/2) \alpha_1 \phi(0)}: (int_0^q dz : e^{b_E phi(z)}:)^n : e^{(1/2) alpha_2 phi(q)}: and is subsequently analytically continued.Comment: LaTeX, 21 pages; v2: a reference adde

    On the correlation between fragility and stretching in glassforming liquids

    Full text link
    We study the pressure and temperature dependences of the dielectric relaxation of two molecular glassforming liquids, dibutyl phtalate and m-toluidine. We focus on two characteristics of the slowing down of relaxation, the fragility associated with the temperature dependence and the stretching characterizing the relaxation function. We combine our data with data from the literature to revisit the proposed correlation between these two quantities. We do this in light of constraints that we suggest to put on the search for empirical correlations among properties of glassformers. In particular, argue that a meaningful correlation is to be looked for between stretching and isochoric fragility, as both seem to be constant under isochronic conditions and thereby reflect the intrinsic effect of temperature

    Measuring gravitational lens time delays using low-resolution radio monitoring observations

    Get PDF
    Obtaining lensing time delay measurements requires long-term monitoring campaigns with a high enough resolution (< 1 arcsec) to separate the multiple images. In the radio, a limited number of high-resolution interferometer arrays make these observations difficult to schedule. To overcome this problem, we propose a technique for measuring gravitational time delays which relies on monitoring the total flux density with low-resolution but high-sensitivity radio telescopes to follow the variation of the brighter image. This is then used to trigger high-resolution observations in optimal numbers which then reveal the variation in the fainter image. We present simulations to assess the efficiency of this method together with a pilot project observing radio lens systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very Large Array (VLA) observations. This new method is promising for measuring time delays because it uses relatively small amounts of time on high-resolution telescopes. This will be important because instruments that have high sensitivity but limited resolution, together with an optimum usage of followup high-resolution observations from appropriate radio telescopes may in the future be useful for gravitational lensing time delay measurements by means of this new method.Comment: 10 pages, 7 figures, accepted by MNRA

    Centers of Mass and Rotational Kinematics for the Relativistic N-Body Problem in the Rest-Frame Instant Form

    Get PDF
    In the Wigner-covariant rest-frame instant form of dynamics it is possible to develop a relativistic kinematics for the N-body problem. The Wigner hyperplanes define the intrinsic rest frame and realize the separation of the center-of-mass. Three notions of {\it external} relativistic center of mass can be defined only in terms of the {\it external} Poincar\'e group realization. Inside the Wigner hyperplane, an {\it internal} unfaithful realization of the Poincar\'e group is defined. The three concepts of {\it internal} center of mass weakly {\it coincide} and are eliminated by the rest-frame conditions. An adapted canonical basis of relative variables is found. The invariant mass is the Hamiltonian for the relative motions. In this framework we can introduce the same {\it dynamical body frames}, {\it orientation-shape} variables, {\it spin frame} and {\it canonical spin bases} for the rotational kinematics developed for the non-relativistic N-body problem.Comment: 78 pages, revtex fil

    The three-dimensional gauge-glass model

    Full text link
    We investigate the temperature-disorder (T-S) phase diagram of a three-dimensional gauge glass model, which is a cubic-lattice nearest-neighbor XY model with quenched random phase shifts A_xy at the bonds, by numerical Monte Carlo simulations. We consider the uncorrelated phase-shift distribution P(A_xy)\sim \exp[(cos A_xy)/S], which has the pure XY model and the uniform distribution of random shifts as extreme cases at S=0 and S->infty respectively, and which gives rise to equal magnetic and overlap correlation functions when T=S. While the high-temperature phase is always paramagnetic, at low temperatures there is a ferromagnetic phase for weak disorder (small S) and a glassy phase at large disorder (large S). These three phases are separated by transition lines with different magnetic and glassy critical behaviors. The disorder induced by the random shifts turns out to be irrelevant at the paramagnetic-ferromagnetic transition line, where the critical behavior belongs to the 3D XY universality class of pure systems; disorder gives only rise to very slowly decaying scaling corrections. The glassy critical behavior along the finite-temperature paramagnetic-glassy transition line belongs to the gauge-glass universality class, with a quite large critical exponent nu=3.2(4). These transition lines meet at a multicritical point M, located at T=S=0.7840(2). The low-temperature ferromagnetic and glassy phases are separated by a third transition line, from M down to the T=0 axis, which is slightly reentrant.Comment: 12 page

    Topological phase transitions between chiral and helical spin textures in a lattice with spin-orbit coupling and a magnetic field

    Full text link
    We consider the combined effects of large spin-orbit couplings and a perpendicular magnetic field in a 2D honeycomb fermionic lattice. This system provides an elegant setup to generate versatile spin textures propagating along the edge of a sample. The spin-orbit coupling is shown to induce topological phase transitions between a helical quantum spin Hall phase and a chiral spin-imbalanced quantum Hall state. Besides, we find that the spin orientation of a single topological edge state can be tuned by a Rashba spin-orbit coupling, opening an interesting route towards quantum spin manipulation. We discuss the possible realization of our results using cold atoms trapped in optical lattices, where large synthetic magnetic fields and spin-orbit couplings can be engineered and finely tuned. In particular, this system would lead to the observation of a time-reversal-symmetry-broken quantum spin Hall phase.Comment: 8 pages, 3 figures, Accepted in Europhys. Lett. (Dec 2011

    Surface Operator, Bubbling Calabi-Yau and AGT Relation

    Full text link
    Surface operators in N=2 four-dimensional gauge theories are interesting half-BPS objects. These operators inherit the connection of gauge theory with the Liouville conformal field theory, which was discovered by Alday, Gaiotto and Tachikawa. Moreover it has been proposed that toric branes in the A-model topological strings lead to surface operators via the geometric engineering. We analyze the surface operators by making good use of topological string theory. Starting from this point of view, we propose that the wave-function behavior of the topological open string amplitudes geometrically engineers the surface operator partition functions and the Gaiotto curves of corresponding gauge theories. We then study a peculiar feature that the surface operator corresponds to the insertion of the degenerate fields in the conformal field theory side. We show that this aspect can be realized as the geometric transition in topological string theory, and the insertion of a surface operator leads to the bubbling of the toric Calabi-Yau geometry.Comment: 36 pages, 14 figures. v2: minor changes and typos correcte

    Solving the large discrepancy between inclusive and exclusive measurements of the 8Li+4He→11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n reaction cross section at astrophysical energies

    Full text link
    A solution of the large discrepancy existing between inclusive and exclusive measurements of the 8Li+4He→11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n reaction cross section at Ecm<3E_{cm} <3 MeV is evaluated. This problem has profound astrophysical relevance for this reaction is of great interest in Big-Bang and r-process nucleosynthesis. By means of a novel technique, a comprehensive study of all existing 8Li+4He→11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n cross section data is carried out, setting up a consistent picture in which all the inclusive measurements provide the reliable value of the cross section. New unambiguous signatures of the strong branch pattern non-uniformities, near the threshold of higher 11B{}^{11}{\rm B} excited levels, are presented and their possible origin, in terms of the cluster structure of the involved excited states of 11B{}^{11}{\rm B} and 12B{}^{12}{\rm B} nuclei, is discussed.Comment: 5 pages, 4 figures, 1 tabl
    • …
    corecore