3,452 research outputs found

    The Grothendieck Group of a Quantum Projective Space Bundle

    Full text link
    We compute the Grothendieck group K_0 of non-commutative analogues of quantum projective space bundles. Our results specialize to give the Grothendieck groups of non-commutative analogues of projective spaces, and specialize to recover the Grothendieck group of a usual projective space bundle over a regular noetherian separated scheme. As an application we develop an intersection theory for the quantum ruled surfaces defined by Van den Bergh.Comment: This paper is being replaced so I can correct the metadata, the title! I (Paul) spelled Grothendieck's name incorrectly. The paper is being reposted with the journal reference and doi added to the metadat

    The Breathing Modes of the B=2B=2 Skyrmion and the Spin-Orbit Interaction

    Get PDF
    The coupling of the breathing and rotational modes of the skyrmion-skyrmion system leads to a nucleon-nucleon spin-orbit interaction of short range, as well as to spin-orbit potentials for the transitions NNN(1440)NNN \to N(1440)N, NNNN(1440)NN \to NN(1440) and NNN(1440)N(1440)NN \to N(1440)N(1440). The longest range behaviour of these spin-orbit potentials is calculated in closed form.Comment: Latex, figures not include

    Minimally-destructive detection of magnetically-trapped atoms using frequency-synthesised light

    Full text link
    We present a technique for atomic density measurements by the off-resonant phase-shift induced on a two-frequency, coherently-synthesised light beam. We have used this scheme to measure the column density of a magnetically trapped atom cloud and to monitor oscillations of the cloud in real time by making over a hundred non-destructive local density measurments. For measurements using pulses of 10,000-100,000 photons lasting ~10 microsecond, the precision is limited by statistics of the photons and the photodiode avalanche. We explore the relationship between measurement precision and the unwanted loss of atoms from the trap and introduce a figure of merit that characterises it. This method can be used to probe the density of a BEC with minimal disturbance of its phase.Comment: Submitted to New Journal of Physic

    Nucleon form factors in the canonically quantized Skyrme model

    Full text link
    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the {\it ab initio} quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, fπf_\pi and ee, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer.Comment: 14pp including figure

    Anomalous radio emission from dust in the Helix

    Full text link
    A byproduct of experiments designed to map the CMB is the recent detection of a new component of foreground Galactic emission. The anomalous foreground at ~ 10--30 GHz, unexplained by traditional emission mechanisms, correlates with 100um dust emission. We report that in the Helix the emission at 31 GHz and 100um are well correlated, and exhibit similar features on sky images, which are absent in H\beta. Upper limits on the 250 GHz continuum emission in the Helix rule out cold grains as candidates for the 31 GHz emission, and provide spectroscopic evidence for an excess at 31 GHz over bremsstrahlung. We estimate that the 100um-correlated radio emission, presumably due to dust, accounts for at least 20% of the 31 GHz emission in the Helix. This result strengthens previous tentative interpretations of diffuse ISM spectra involving a new dust emission mechanism at radio frequencies. Very small grains have not been detected in the Helix, which hampers interpreting the new component in terms of spinning dust. The observed iron depletion in the Helix favors considering the identity of this new component to be magnetic dipole emission from hot ferromagnetic grains. The reduced level of free-free continuum we report also implies an electronic temperature of Te=4600\pm1200K for the free-free emitting material, which is significantly lower than the temperature of 9500\pm500K inferred from collisionally-excited lines (abridged).Comment: Accepted for publication in Ap

    Multi-order interference is generally nonzero

    Get PDF
    It is demonstrated that the third-order interference, as obtained from explicit solutions of Maxwell's equations for realistic models of three-slit devices, including an idealized version of the three-slit device used in a recent three-slit experiment with light (U. Sinha et al., Science 329, 418 (2010)), is generally nonzero. The hypothesis that the third-order interference should be zero is shown to be fatally flawed because it requires dropping the one-to-one correspondence between the symbols in the mathematical theory and the different experimental configurations.Comment: Replaced Figs. 4,5 and caption of Fig.

    Nucleon-nucleon potential in finite nuclei

    Get PDF
    We consider the spin-isospin-independent central part of the residual nucleon-nucleon potential in finite spherical nuclei taking into account the deformation effects of the nucleons within the surrounding nuclear environment. It is shown that inside the nucleus the short-range repulsive contribution of the potential is increased and the intermediate attraction is decreased. We identify the growth of the radial component of the spin-isospin independent short-range part of the in-medium nucleon-nucleon interaction as the responsible agent that prevents the radial collapse of the nucleus.Comment: 9 pages, 3 eps figure
    corecore