44 research outputs found

    Lack of Renal 11 Beta-Hydroxysteroid Dehydrogenase Type 2 at Birth, a Targeted Temporal Window for Neonatal Glucocorticoid Action in Human and Mice

    Get PDF
    International audienceBackground Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. Methods Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. Results We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. Conclusions We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming

    Holoprosencephaly

    Get PDF
    Holoprosencephaly (HPE) is a complex brain malformation resulting from incomplete cleavage of the prosencephalon, occurring between the 18th and the 28th day of gestation and affecting both the forebrain and the face. It is estimated to occur in 1/16,000 live births and 1/250 conceptuses. Three ranges of increasing severity are described: lobar, semi-lobar and alobar HPE. Another milder subtype of HPE called middle interhemispheric variant (MIHF) or syntelencephaly is also reported. In most of the cases, facial anomalies are observed in HPE, like cyclopia, proboscis, median or bilateral cleft lip/palate in severe forms, ocular hypotelorism or solitary median maxillary central incisor in minor forms. These latter midline defects can occur without the cerebral malformations and then are called microforms. Children with HPE have many medical problems: developmental delay and feeding difficulties, epilepsy, instability of temperature, heart rate and respiration. Endocrine disorders like diabetes insipidus, adrenal hypoplasia, hypogonadism, thyroid hypoplasia and growth hormone deficiency are frequent. To date, seven genes have been positively implicated in HPE: Sonic hedgehog (SHH), ZIC2, SIX3, TGIF, PTCH, GLI2 and TDGF1. A molecular diagnosis can be performed by gene sequencing and allele quantification for the four main genes SHH, ZIC2, SIX3 and TGIF. Major rearrangements of the subtelomeres can also be identified by multiplex ligation-dependent probe amplification (MLPA). Nevertheless, in about 70% of cases, the molecular basis of the disease remains unknown, suggesting the existence of several other candidate genes or environmental factors. Consequently, a "multiple-hit hypothesis" of genetic and/or environmental factors (like maternal diabetes) has been proposed to account for the extreme clinical variability. In a practical approach, prenatal diagnosis is based on ultrasound and magnetic resonance imaging (MRI) rather than on molecular diagnosis. Treatment is symptomatic and supportive, and requires a multidisciplinary management. Child outcome depends on the HPE severity and the medical and neurological complications associated. Severely affected children have a very poor prognosis. Mildly affected children may exhibit few symptoms and may live a normal life

    Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications

    Get PDF

    Transient regime in second harmonic generation

    No full text
    International audienc

    Calpain3 expression during human cardiogenesis

    No full text
    Transcripts of calpain3, the gene involved in limb girdle muscular dystrophy type 2A, appear in organs other than the skeletal muscle during human development, the first of which being the early embryonic heart. We examined more precisely the spatio-temporal transcription pattern of calpain3 during human cardiogenesis and the appearance of its protein in fetal tissues, and correlated it to titin expression. Different events of the heart's maturation can be recognized: (i) the presence of titin RNA or protein constitute very precocious developmental cardiac markers appearing before the fusion of the two lateral endocardial tubes; (ii) the disappearance of calpain3 RNA from the ventricular compartment later in the embryonic heart. Finally, although calpain3 transcripts are present in the heart, the corresponding protein is not detected elsewhere than in skeletal muscle

    Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development

    No full text
    Cardiac myosin binding protein C (MyBP-C) is a substantial component of the sarcomere, with both structural and regulatory roles. The gene encoding cardiac MyBP-C in humans is located on chromosome 11p11.2, and mutations that are most predicted to produce truncated proteins have been identified in this gene in unrelated families with familial hypertrophic cardiomyopathy (FHC). To understand better the pathophysiology of FHC and with a view to the development of animal models for this disease, we have investigated by in situ hybridization the pattern of expression of the cardiac MyBP-C gene during human and mouse development using species-specific oligonucleotide probes. From 4 weeks of human development, a strong labeling of cardiac MyBP-C mRNAs was unambiguously detected in all heart compartments, and no signal could be visualized in somites. In murine embryos, from embryonic day 9.5 until birth, a strong signal was detected exclusively in the heart. Our results showed that during both human and murine development, in contrast to chicken development, the cardiac MyBP-C gene is abundantly and specifically expressed in the heart

    Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1

    No full text
    Thanatophoric dwarfism (TD) is a sporadic lethal skeletal dysplasia with micromelic shortening of the limbs, macrocephaly, platyspondyly and reduced thoracic cavity. In the most common subtype (TD1), femurs are curved, while in TD2, straight femurs are associated with cloverleaf skull. Mutations in the fibroblast growth factor receptor 3 (FGFR3) gene were identified in both subtypes. While TD2 was accounted for by a single recurrent mutation in the tyrosine kinase 2 domain, TD1 resulted from either stop codon mutations or missense mutations in the extracellular domain of the gene. Here, we report the identification of FGFR3 mutations in 25/26 TD cases. Two novel missense mutations (Y373C and G370C) were detected in 8/26 and 1/26 TD1 cases respectively. Both mutations created cysteine residues in the juxta extramembrane domain of the receptor. Sixteen cases carried the previously reported R248C (9/26 cases), S249C (2/26 cases) or stop codon FGFR3 mutations (5/26 cases). Our results suggest that TD1 is a genetically homogeneous condition and give additional support to the view that newly created cysteine residues in the extracellular domain of the protein play a key role in the severity of the disease
    corecore