961 research outputs found

    Measuring Luttinger Liquid Correlations from Charge Fluctuations in a Nanoscale Structure

    Full text link
    We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side-coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.Comment: REVTeX, 4 pages, 1 figure included. Final version, two references adde

    Dynamical mean-field theory of indirect magnetic exchange

    Full text link
    To analyze the physical properties arising from indirect magnetic exchange between several magnetic adatoms and between complex magnetic nanostructures on metallic surfaces, the real-space extension of dynamical mean-field theory (R-DMFT) appears attractive as it can be applied to systems of almost arbitrary geometry and complexity. While R-DMFT describes the Kondo effect of a single adatom exactly, indirect magnetic (RKKY) exchange is taken into account on an approximate level only. Here, we consider a simplified model system consisting of two magnetic Hubbard sites ("adatoms") hybridizing with a non-interacting tight-binding chain ("substrate surface"). This two-impurity Anderson model incorporates the competition between the Kondo effect and indirect exchange but is amenable to an exact numerical solution via the density-matrix renormalization group (DMRG). The particle-hole symmetric model at half-filling and zero temperature is used to benchmark R-DMFT results for the magnetic coupling between the two adatoms and for the magnetic properties induced in the substrate. In particular, the dependence of the local adatom and the nonlocal adatom-adatom static susceptibilities as well as the magnetic response of the substrate on the distance between the adatoms and on the strength of their coupling with the substrate is studied. We find both, excellent agreement with the DMRG data even on subtle details of the competition between RKKY exchange and the Kondo effect but also complete failure of the R-DMFT, depending on the parameter regime considered. R-DMFT calculations are performed using the Lanczos method as impurity solver. With the real-space extension of the two-site DMFT, we also benchmark a simplified R-DMFT variant.Comment: 14 pages, 8 figure

    Image Co-localization by Mimicking a Good Detector's Confidence Score Distribution

    Full text link
    Given a set of images containing objects from the same category, the task of image co-localization is to identify and localize each instance. This paper shows that this problem can be solved by a simple but intriguing idea, that is, a common object detector can be learnt by making its detection confidence scores distributed like those of a strongly supervised detector. More specifically, we observe that given a set of object proposals extracted from an image that contains the object of interest, an accurate strongly supervised object detector should give high scores to only a small minority of proposals, and low scores to most of them. Thus, we devise an entropy-based objective function to enforce the above property when learning the common object detector. Once the detector is learnt, we resort to a segmentation approach to refine the localization. We show that despite its simplicity, our approach outperforms state-of-the-art methods.Comment: Accepted to Proc. European Conf. Computer Vision 201

    Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

    Full text link
    The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure

    Voronoia: analyzing packing in protein structures

    Get PDF
    The packing of protein atoms is an indicator for their stability and functionality, and applied in determining thermostability, in protein design, ligand binding and to identify flexible regions in proteins. Here, we present Voronoia, a database of atomic-scale packing data for protein 3D structures. It is based on an improved Voronoi Cell algorithm using hyperboloid interfaces to construct atomic volumes, and to resolve solvent-accessible and -inaccessible regions of atoms. The database contains atomic volumes, local packing densities and interior cavities calculated for 61 318 biological units from the PDB. A report for each structure summarizes the packing by residue and atom types, and lists the environment of interior cavities. The packing data are compared to a nonredundant set of structures from SCOP superfamilies. Both packing densities and cavities can be visualized in the 3D structures by the Jmol plugin. Additionally, PDB files can be submitted to the Voronoia server for calculation. This service performs calculations for most full-atomic protein structures within a few minutes. For batch jobs, a standalone version of the program with an optional PyMOL plugin is available for download. The database can be freely accessed at: http://bioinformatics.charite.de/voronoia

    Shape and structure of N=Z 64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reaction

    Get PDF
    Transition rate measurements are reported for the first and the second 2+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale Shell Model calculations applying the recently developed GXPF1A interactions. Theoretical analysis suggests that 64Ge is a collective gamma-soft anharmonic vibrator. The measurement was done using the Recoil Distance Method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knock-out reaction. RDM studies of knock-out and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei

    Lifetime measurements in 63^{63}Co and 65^{65}Co

    Get PDF
    Lifetimes of the 9/21−9/2^-_1 and 3/21−3/2^-_1 states in 63^{63}Co and the 9/21−9/2^-_1 state in 65^{65}Co were measured using the recoil distance Doppler shift and the differential decay curve methods. The nuclei were populated by multi-nucleon transfer reactions in inverse kinematics. Gamma rays were measured with the EXOGAM Ge array and the recoiling fragments were fully identified using the large-acceptance VAMOS spectrometer. The E2 transition probabilities from the 3/21−3/2^-_1 and 9/21−9/2^-_1 states to the 7/2−7/2^- ground state could be extracted in 63^{63}Co as well as an upper limit for the 9/21−→7/21−9/2^-_1\rightarrow7/2^-_1 BB(E2) value in 65^{65}Co. The experimental results were compared to large-scale shell-model calculations in the pfpf and pfg9/2pfg_{9/2} model spaces, allowing to draw conclusions on the single-particle or collective nature of the various states.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Physical Review

    Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems

    Full text link
    The many-body Monte Carlo method is used to evaluate the frequency dependent conductivity and the average mobility of a system of hopping charges, electronic or ionic on a one-dimensional chain or channel of finite length. Two cases are considered: the chain is connected to electrodes and in the other case the chain is confined giving zero dc conduction. The concentration of charge is varied using a gate electrode. At low temperatures and with the presence of an injection barrier, the mobility is an oscillatory function of density. This is due to the phenomenon of charge density pinning. Mobility changes occur due to the co-operative pinning and unpinning of the distribution. At high temperatures, we find that the electron-electron interaction reduces the mobility monotonically with density, but perhaps not as much as one might intuitively expect because the path summation favour the in-phase contributions to the mobility, i.e. the sequential paths in which the carriers have to wait for the one in front to exit and so on. The carrier interactions produce a frequency dependent mobility which is of the same order as the change in the dc mobility with density, i.e. it is a comparably weak effect. However, when combined with an injection barrier or intrinsic disorder, the interactions reduce the free volume and amplify disorder by making it non-local and this can explain the too early onset of frequency dependence in the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review

    Tomonaga-Luttinger model with an impurity for a weak two-body interaction

    Full text link
    The Tomonaga-Luttinger model with impurity is studied by means of flow equations for Hamiltonians. The system is formulated within collective density fluctuations but no use of the bosonization formula is made. The truncation scheme includes operators consisting of up to four fermion operators and is valid for small electron-electron interactions. In this regime, the exact expression for the anomalous dimension is recovered. Furthermore, we verify the phase diagram of Kane and Fisher also for intermediate impurity strength. The approach can be extended to more general one-body potentials.Comment: 10 pages, 1 figur

    Polymer depletion interaction between two parallel repulsive walls

    Get PDF
    The depletion interaction between two parallel repulsive walls confining a dilute solution of long and flexible polymer chains is studied by field-theoretic methods. Special attention is paid to self-avoidance between chain monomers relevant for polymers in a good solvent. Our direct approach avoids the mapping of the actual polymer chains on effective hard or soft spheres. We compare our results with recent Monte Carlo simulations [A. Milchev and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for the depletion interaction between a spherical colloidal particle and a planar wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe
    • …
    corecore