39,940 research outputs found
The branch processes of vortex filaments and Hopf Invariant Constraint on Scroll Wave
In this paper, by making use of Duan's topological current theory, the
evolution of the vortex filaments in excitable media is discussed in detail.
The vortex filaments are found generating or annihilating at the limit points
and encountering, splitting, or merging at the bifurcation points of a complex
function . It is also shown that the Hopf invariant of knotted
scroll wave filaments is preserved in the branch processes (splitting, merging,
or encountering) during the evolution of these knotted scroll wave filaments.
Furthermore, it also revealed that the "exclusion principle" in some chemical
media is just the special case of the Hopf invariant constraint, and during the
branch processes the "exclusion principle" is also protected by topology.Comment: 9 pages, 5 figure
Thorium-doping induced superconductivity up to 56 K in Gd1-xThxFeAsO
Following the discovery of superconductivity in an iron-based arsenide
LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc
was pushed up surprisingly to above 40 K by either applying pressure[2] or
replacing La with Sm[3], Ce[4], Nd[5] and Pr[6]. The maximum Tc has climbed to
55 K, observed in SmO1-xFxFeAs[7, 8] and SmFeAsO1-x[9]. The value of Tc was
found to increase with decreasing lattice parameters in LnFeAsO1-xFx (Ln stands
for the lanthanide elements) at an apparently optimal doping level. However,
the F- doping in GdFeAsO is particularly difficult[10,11] due to the lattice
mismatch between the Gd2O2 layers and Fe2As2 layers. Here we report observation
of superconductivity with Tc as high as 56 K by the Th4+ substitution for Gd3+
in GdFeAsO. The incorporation of relatively large Th4+ ions relaxes the lattice
mismatch, hence induces the high temperature superconductivity.Comment: 4 pages, 3 figure
Wilson Fermions on a Randomly Triangulated Manifold
A general method of constructing the Dirac operator for a randomly
triangulated manifold is proposed. The fermion field and the spin connection
live, respectively, on the nodes and on the links of the corresponding dual
graph. The construction is carried out explicitly in 2-d, on an arbitrary
orientable manifold without boundary. It can be easily converted into a
computer code. The equivalence, on a sphere, of Majorana fermions and Ising
spins in 2-d is rederived. The method can, in principle, be extended to higher
dimensions.Comment: 18 pages, latex, 6 eps figures, fig2 corrected, Comment added in the
conclusion sectio
Superconductivity in heavily boron-doped silicon carbide
The discoveries of superconductivity in heavily boron-doped diamond (C:B) in
2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state
of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a
metallic phase from which upon further doping superconductivity can emerge.
Recently, we discovered superconductivity in a closely related system:
heavily-boron doped silicon carbide (SiC:B). The sample used for that study
consists of cubic and hexagonal SiC phase fractions and hence this lead to the
question which of them participates in the superconductivity. Here we focus on
a sample which mainly consists of hexagonal SiC without any indication for the
cubic modification by means of x-ray diffraction, resistivity, and ac
susceptibility.Comment: 9 pages, 5 figure
Topological Aspect of Knotted Vortex Filaments in Excitable Media
Scroll waves exist ubiquitously in three-dimensional excitable media. It's
rotation center can be regarded as a topological object called vortex filament.
In three-dimensional space, the vortex filaments usually form closed loops, and
even linked and knotted. In this letter, we give a rigorous topological
description of knotted vortex filaments. By using the -mapping
topological current theory, we rewrite the topological current form of the
charge density of vortex filaments and use this topological current we reveal
that the Hopf invariant of vortex filaments is just the sum of the linking and
self-linking numbers of the knotted vortex filaments. We think that the precise
expression of the Hopf invariant may imply a new topological constraint on
knotted vortex filaments.Comment: 4 pages, no figures, Accepted by Chin. Phys. Let
Inference of mixed information in Formal Concept Analysis
Negative information can be considered twofold: by means
of a negation operator or by capturing the absence of information. In
this second approach, a new framework have to be developed: from the syntax to the semantics, including the management of such generalized knowledge representation. In this work we traverse all these issues in the framework of formal concept analysis, introducing a new set of inference rules to manage mixed (positive and negative) attributes.TIN2014-59471-P of the Science and Innovation
Ministry of Spain, co-funded by the European Regional Development Fund
(ERDF). UNIVERSIDAD DE MÁLAGA. Campus de Excelencia Internacional Andalucía Tech
Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models
Possibility of unconventional pairing due to Coulomb interaction in
iron-pnictide superconductors is studied by applying a perturbative approach to
realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is
solved by expanding the effective pairing interaction perturbatively up to
third order in the on-site Coulomb integrals. The numerical results for the
5-band model suggest that the eigenvalues of the Eliashberg equation are
sufficiently large to explain the actual high Tc for realistic values of
Coulomb interaction and the most probable pairing state is spin-singlet s-wave
without any nodes just on the Fermi surfaces, although the superconducting
order parameter changes its sign between the small Fermi pockets. On the other
hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on
Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008
- …