112 research outputs found

    Tc=21K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain

    Full text link
    High purity epitaxial FeSe0.5Te0.5 thin films with different thickness were grown by Pulsed Laser Ablation on different substrates. By varying the film thickness, Tc up to 21K were observed, significantly larger than the bulk value. Structural analyses indicated that the a axis changes significantly with the film thickness and is linearly related to the Tc. The latter result indicates the important role of the compressive strain in enhancing Tc. Tc is also related to both the Fe-(Se,Te) bond length and angle, suggesting the possibility of further enhancement

    From antiferromagnetism to superconductivity in Fe 1+y(Te1-x,Sex) (0 < x < 0.20): a neutron powder diffraction analysis

    Full text link
    The nuclear and magnetic structure of Fe1+y(Te1-x,Sex) (0 < x < 0.20) compounds was analyzed between 2 K and 300 K by means of Rietveld refinement of neutron powder diffraction data. Samples with x < 0.075 undergo a tetragonal to monoclinic phase transition at low temperature, whose critical temperature decreases with increasing Se content; this structural transition is strictly coupled to a long range antiferromagnetic ordering at the Fe site. Both the transition to a monoclinic phase and the long range antiferromagnetism are suppressed for 0.10 < x < 0.20. The onset of the structural and of the magnetic transition remains coincident with the increase of Se substitution. The low temperature monoclinic crystal structure has been revised. Superconductivity arises for x > 0.05, therefore a significant region where superconductivity and long range antiferromagnetism coexist is present in the pseudo-binary FeTe - FeSe phase diagram.Comment: 33 pages, 4 tables, 13 figure

    Transport and superconducting properties of Fe-based superconductors: SmFeAs(O1-x Fx) versus Fe1+y (Te1-x, Sex)

    Full text link
    We present transport and superconducting properties - namely resistivity, magnetoresistivity, Hall effect, Seebeck effect, thermal conductivity, upper critical field - of two different families of Fe-based superconductors, which can be viewed in many respects as end members: SmFeAs(O1-xFx) with the largest Tc and the largest anisotropy and Fe1+y(Te1-x,Sex), with the largest Hc2, the lowest Tc and the lowest anisotropy. In the case of the SmFeAs(O1-xFx) series, we find that a single band description allows to extract an approximated estimation of band parameters such as carrier density and mobility from experimental data, although the behaviour of Seebeck effect as a function of doping demonstrates that a multiband description would be more appropriate. On the contrary, experimental data of the Fe1+y(Te1-x,Sex) series exhibit a strongly compensated behaviour, which can be described only within a multiband model. In the Fe1+y(Te1-x,Sex) series, the role of the excess Fe, tuned by Se stoichiometry, is found to be twofold: it dopes electrons in the system and it introduces localized magnetic moments, responsible for Kondo like scattering and likely pair-breaking of Cooper pairs. Hence, excess Fe plays a crucial role also in determining superconducting properties such as the Tc and the upper critical field Bc2. The huge Bc2 values of the Fe1+y(Te1-x,Sex) samples are described by a dirty limit law, opposed to the clean limit behaviour of the SmFeAs(O1-xFx) samples. Hence, magnetic scattering by excess Fe seems to drive the system in the dirty regime, but its detrimental pairbreaking role seems not to be as severe as predicted by theory. This issue has yet to be clarified, addressing the more fundamental issue of the interplay between magnetism and superconductivity

    Evidence for polarons in iron pnictides of the Ln-1111 and AE-122 families

    Full text link
    Examination of the electrical resistivities of iron pnictides shows that they can be accounted by conduction by polarons. Their activation energies show a linear behaviour with the critical temperatures of the spin density waves (SDW), T*, as both vary with pressure. The slope matches the ratio SDW gap to T*, while the intercept can be related to the transition temperature of the lattice distortion, T0. An adapted Landau free energy predicts the observed order of the transitions, according to which is higher, T* or T0. Simple arguments favour combined Jahn-Teller antiferromagnetic bipolarons.Comment: 14 pages with 4 Figure

    Magneto-transport and magnetic susceptibility of SmFeAsO1-xFx (x = 0.0 and 0.20)

    Full text link
    Bulk polycrystalline samples, SmFeAsO and the iso-structural superconducting SmFeAsO0.80F0.20 are explored through resistivity with temperature under magnetic field {\rho}(T, H), AC and DC magnetization (M-T), and Specific heat (Cp) measurements. The Resistivity measurement shows superconductivity for x = 0.20 sample with Tc(onset) ~ 51.7K. The upper critical field, [Hc2(0)] is estimated ~3770kOe by Ginzburg-Landau (GL) theory. Broadening of superconducting transition in magneto transport is studied through thermally activated flux flow in applied field up to 130 kOe. The flux flow activation energy (U/kB) is estimated ~1215K for 1kOe field. Magnetic measurements exhibited bulk superconductivity with lower critical field (Hc1) of ~1.2kOe at 2K. In normal state, the paramagnetic nature of compound confirms no trace of magnetic impurity which orders ferromagnetically. AC susceptibility measurements have been carried out for SmFeAsO0.80F0.20 sample at various amplitude and frequencies of applied AC drive field. The inter-granular critical current density (Jc) is estimated. Specific heat [Cp(T)] measurement showed an anomaly at around 140K due to the SDW ordering of Fe, followed by another peak at 5K corresponding to the antiferromagnetic (AFM) ordering of Sm+3 ions in SmFeAsO compound. Interestingly the change in entropy (marked by the Cp transition height) at 5K for Sm+3 AFM ordering is heavily reduced in case of superconducting SmFeAsO0.80F0.20 sample.Comment: 18 pages text + Figs: comments/suggestions welcome ([email protected]

    Effect of the chemical pressure on superconductivity and SDW in undoped and 15%F doped La1-yYyFeAsO compounds

    Full text link
    We present a study concerning the partial substitution of yttrium at the lanthanum site of the undoped LaFeAsO and superconducting LaFeAsO0.85F0.15 compounds. We prepared samples with a nominal yttrium content up to 70% producing simultaneous shrinkage of both the a- and c-lattice parameters by 1.8% and 1.7%, respectively. The chemical pressure provided by the partial substitution with this smaller ion size causes a lowering of the spin density wave temperature in the undoped compounds, as well as an increase of the superconducting transition temperatures in the doped ones. The 15% fluorine-doped samples reach a maximum critical temperature of 40.2 K for the 50% yttrium substitution. Comparison with literature data indicates that chemical pressure cannot be the only mechanism which tunes drastically both TSDW and Tc in 1111 compounds. Our data suggest that structural disorder induced by the partial substitution in the La site or by doping could play an important role as well

    New Fe-based superconductors: properties relevant for applications

    Full text link
    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length, and unconventional pairing, On the other hand the Fe-based superconductors have metallic parent compounds, and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, the supposed order parameter symmetry is s wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviours and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest Tc, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates, while the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the Tc of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families

    Isoelectronic Ru substitution at Fe-site in Sm(Fe1-xRux)As(O0.85F0.15) compound and its effects on structural, superconducting and normal state properties

    Full text link
    In this work we present a systematic experimental and theoretical study of the structural, transport and superconducting properties of Sm(Fe1-xRux)As(O0.85F0.15) polycrystalline samples as a function of Ru content (x) ranging from 0 to 1. The choice of Ru as isoelectronic substitution at Fe site of F-doped compounds allows to better clarify the role of structural disorder in modifying the normal and superconducting properties of these newly discovered multiband superconductors. Two different regions are identified: the Fe-rich phase (x<0.5) where superconducting and normal state properties are strongly affected by disorder induced by Ru substitution; the Ru-rich phase (x>0.5) where the system is metallic and strongly compensated and the presence of Ru frustrates the magnetic moment on Fe ions. Here the lack of magnetic features and related spin fluctuations may be the cause for the suppression of superconductivity.Comment: Accepted on Physical Review

    Point-contact study of ReFeAs(1-x)Fx (Re=La, Sm) superconducting films

    Full text link
    Point-contact (PC) Andreev-reflection (AR) measurements of the superconducting gap in iron-oxipnictide ReFeAsO_{1-x}F_x (Re=La, Sm) films have been carried out. The value of the gap is distributed in the range 2\Delta \simeq 5-10 meV (for Re=Sm) with a maximum in the distribution around 6 meV. Temperature dependence of the gap \Delta(T) can be fitted well by BCS curve giving reduced gap ratio 2\Delta /kT_c^*\simeq 3.5 (here T_c^* is the critical temperature from the BCS fit). At the same time, an expected second larger gap feature was difficult to resolve distinctly on the AR spectra making determination reliability of the second gap detection questionable. Possible reasons for this and the origin of other features like clear-cut asymmetry in the AR spectra and current regime in PCs are discussed.Comment: 6 two-column pages, 6 figs., 26 Refs., to be published in Superconductor Science and Technolog

    Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity

    Full text link
    The electronic specific heat of as-grown and annealed single-crystals of FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, Tc. Both 2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump at Tc, gamma_n: the electronic specific-heat coefficient in the normal state, gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29 and 2.76, respectively, indicating that the superconductivity is of the strong coupling. The thermodynamic critical field has also been estimated. gamma_n has been found to be one order of magnitude larger than those estimated from the band calculations and increases with increasing x at x=0.6-0.9, which is surmised to be due to the increase in the electronic effective mass, namely, the enhancement of the electron correlation. It has been found that there remains a finite value of gamma_0 in the SC state even in the well-annealed single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for publication in J. Phys. Soc. Jp
    • 

    corecore