15,843 research outputs found

    Spontaneous electro-weak symmetry breaking and cold dark matter

    Full text link
    In the standard model, the weak gauge bosons and fermions obtain mass after spontaneous electro-weak symmetry breaking, which is realized through one fundamental scalar field, namely Higgs field. In this paper we study the simplest scalar cold dark matter model in which the scalar cold dark matter also obtains mass through interaction with the weak-doublet Higgs field, the same way as those of weak gauge bosons and fermions. Our study shows that the correct cold dark matter relic abundance within 3σ3\sigma uncertainty (0.093<Ωdmh2<0.129 0.093 < \Omega_{dm} h^2 < 0.129 ) and experimentally allowed Higgs boson mass (114.4≀mh≀208114.4 \le m_h \le 208 GeV) constrain the scalar dark matter mass within 48≀mS≀7848 \le m_S \le 78 GeV. This result is in excellent agreement with that of W. de Boer et.al. (50∌10050 \sim 100 GeV). Such kind of dark matter annihilation can account for the observed gamma rays excess (10σ10\sigma) at EGRET for energies above 1 GeV in comparison with the expectations from conventional Galactic models. We also investigate other phenomenological consequences of this model. For example, the Higgs boson decays dominantly into scalar cold dark matter if its mass lies within 48∌6448 \sim 64 GeV.Comment: 4 Revtex4 pages, refs adde

    A new Determination of the Extragalactic Background of Diffuse Gamma Rays taking into account Dark Matter Annihilation

    Full text link
    The extragalactic background (EGB) of diffuse gamma rays can be determined by subtracting the Galactic contribution from the data. This requires a Galactic model (GM) and we include for the first time the contribution of dark matter annihilation (DMA), which was previously proposed as an explanation for the EGRET excess of diffuse Galactic gamma rays above 1 GeV. In this paper it is shown that the newly determined EGB shows a characteristic high energy bump on top of a steeply falling soft contribution. The bump is shown to be compatible with a contribution from an extragalactic DMA signal from weakly interacting massive particles (WIMPs) with a mass between 50 and 100 GeV in agreement with the EGRET excess of the Galactic diffuse gamma rays and in disagreement with earlier analysis. The remaining soft contribution of the EGB is shown to resemble the spectra of the observed point sources in our Galaxy.Comment: 7 pages, 4 figures. Accepted by A&A, made Fig. 4 and table 1 consisten

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    Supersymmetry and LHC

    Get PDF
    The motivation for introduction of supersymmetry in high energy physics as well as a possibility for supersymmetry discovery at LHC (Large Hadronic Collider) are discussed. The main notions of the Minimal Supersymmetric Standard Model (MSSM) are introduced. Different regions of parameter space are analyzed and their phenomenological properties are compared. Discovery potential of LHC for the planned luminosity is shown for different channels. The properties of SUSY Higgs bosons are studied and perspectives of their observation at LHC are briefly outlined.Comment: Lectures given at the 9th Moscow International School of Physics (XXXIV ITEP Winter School of Physics

    A gobal fit to the anomalous magnetic moment, Higgs limit and b->s gamma in the constrained MSSM

    Full text link
    New data on the anomalous magnetic moment of the muon together with the b->s gamma decay rate and Higgs limits are considered within the supergravity inspired constrained minimal supersymmetric model. We perform a global statistical chi2 analysis of these data and show that the allowed region of parameter space is bounded from below by the Higgs limit, which depends on the trilinear coupling and from above by the anomalous magnetic moment.Comment: 3 pages, To appear in Proc. of SUSY01, Dubna (Russia

    Organic Single-Crystal Field-Effect Transistors

    Full text link
    We present an overview of recent studies of the charge transport in the field effect transistors on the surface of single crystals of organic low-molecular-weight materials. We first discuss in detail the technological progress that has made these investigations possible. Particular attention is devoted to the growth and characterization of single crystals of organic materials and to different techniques that have been developed for device fabrication. We then concentrate on the measurements of the electrical characteristics. In most cases, these characteristics are highly reproducible and demonstrate the quality of the single crystal transistors. Particularly noticeable are the small sub-threshold slope, the non-monotonic temperature dependence of the mobility, and its weak dependence on the gate voltage. In the best rubrene transistors, room-temperature values of Ό\mu as high as 15 cm2^2/Vs have been observed. This represents an order-of-magnitude increase with respect to the highest mobility previously reported for organic thin film transistors. In addition, the highest-quality single-crystal devices exhibit a significant anisotropy of the conduction properties with respect to the crystallographic direction. These observations indicate that the field effect transistors fabricated on single crystals are suitable for the study of the \textit{intrinsic} electronic properties of organic molecular semiconductors. We conclude by indicating some directions in which near-future work should focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on organic semiconductor

    The coupling of a hearing aid loudspeaker membrane to visco-thermal air layers

    Get PDF
    Hearing aids and their components are becoming smaller. This presents new problems for the acoustical components, such as the loudspeaker. A circular membrane of a hearing aid loudspeaker is modeled in this paper. Neglecting air influences, the membrane and its suspension behave as a mass spring system. However, under operating conditions, thin layers of air on both sides of the membrane influence its behavior. Air can enter and leave these layers at certain locations on the circular edge of the layer. Since these air layers are thin, visco-thermal effects may have to be taken into account. Therefore, the air layers are not modeled by the wave equation, but by the low reduced frequency model that takes these visco-thermal effects into account. The equations of this model are solved in a polar coordinate system, using a wave-based method. The other acoustical parts of the hearing aid loudspeaker, and the membrane itself are modeled by simple lumped models. The emphasis in this paper is on the coupling of the viscothermal air layer model to the mechanical model of the membrane. Coupling of the air layer to other acoustical parts by using an impedance as boundary condition for the layer model, is also described. The resulting model is verified by experiments. The model and the measurements match reasonably well, considering the level of approximation with lumped parts
    • 

    corecore