15,843 research outputs found
Spontaneous electro-weak symmetry breaking and cold dark matter
In the standard model, the weak gauge bosons and fermions obtain mass after
spontaneous electro-weak symmetry breaking, which is realized through one
fundamental scalar field, namely Higgs field. In this paper we study the
simplest scalar cold dark matter model in which the scalar cold dark matter
also obtains mass through interaction with the weak-doublet Higgs field, the
same way as those of weak gauge bosons and fermions. Our study shows that the
correct cold dark matter relic abundance within uncertainty () and experimentally allowed Higgs boson mass
( GeV) constrain the scalar dark matter mass within GeV. This result is in excellent agreement with that of W. de
Boer et.al. ( GeV). Such kind of dark matter annihilation can
account for the observed gamma rays excess () at EGRET for energies
above 1 GeV in comparison with the expectations from conventional Galactic
models. We also investigate other phenomenological consequences of this model.
For example, the Higgs boson decays dominantly into scalar cold dark matter if
its mass lies within GeV.Comment: 4 Revtex4 pages, refs adde
A new Determination of the Extragalactic Background of Diffuse Gamma Rays taking into account Dark Matter Annihilation
The extragalactic background (EGB) of diffuse gamma rays can be determined by
subtracting the Galactic contribution from the data. This requires a Galactic
model (GM) and we include for the first time the contribution of dark matter
annihilation (DMA), which was previously proposed as an explanation for the
EGRET excess of diffuse Galactic gamma rays above 1 GeV.
In this paper it is shown that the newly determined EGB shows a
characteristic high energy bump on top of a steeply falling soft contribution.
The bump is shown to be compatible with a contribution from an extragalactic
DMA signal from weakly interacting massive particles (WIMPs) with a mass
between 50 and 100 GeV in agreement with the EGRET excess of the Galactic
diffuse gamma rays and in disagreement with earlier analysis. The remaining
soft contribution of the EGB is shown to resemble the spectra of the observed
point sources in our Galaxy.Comment: 7 pages, 4 figures. Accepted by A&A, made Fig. 4 and table 1
consisten
Further search for a neutral boson with a mass around 9 MeV/c2
Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1
transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In
the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0
level at 18.15 MeV, a significant deviation from IPC was observed at large pair
correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the
12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9
MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table
Supersymmetry and LHC
The motivation for introduction of supersymmetry in high energy physics as
well as a possibility for supersymmetry discovery at LHC (Large Hadronic
Collider) are discussed. The main notions of the Minimal Supersymmetric
Standard Model (MSSM) are introduced. Different regions of parameter space are
analyzed and their phenomenological properties are compared. Discovery
potential of LHC for the planned luminosity is shown for different channels.
The properties of SUSY Higgs bosons are studied and perspectives of their
observation at LHC are briefly outlined.Comment: Lectures given at the 9th Moscow International School of Physics
(XXXIV ITEP Winter School of Physics
A gobal fit to the anomalous magnetic moment, Higgs limit and b->s gamma in the constrained MSSM
New data on the anomalous magnetic moment of the muon together with the b->s
gamma decay rate and Higgs limits are considered within the supergravity
inspired constrained minimal supersymmetric model. We perform a global
statistical chi2 analysis of these data and show that the allowed region of
parameter space is bounded from below by the Higgs limit, which depends on the
trilinear coupling and from above by the anomalous magnetic moment.Comment: 3 pages, To appear in Proc. of SUSY01, Dubna (Russia
Organic Single-Crystal Field-Effect Transistors
We present an overview of recent studies of the charge transport in the field
effect transistors on the surface of single crystals of organic
low-molecular-weight materials. We first discuss in detail the technological
progress that has made these investigations possible. Particular attention is
devoted to the growth and characterization of single crystals of organic
materials and to different techniques that have been developed for device
fabrication. We then concentrate on the measurements of the electrical
characteristics. In most cases, these characteristics are highly reproducible
and demonstrate the quality of the single crystal transistors. Particularly
noticeable are the small sub-threshold slope, the non-monotonic temperature
dependence of the mobility, and its weak dependence on the gate voltage. In the
best rubrene transistors, room-temperature values of as high as 15
cm/Vs have been observed. This represents an order-of-magnitude increase
with respect to the highest mobility previously reported for organic thin film
transistors. In addition, the highest-quality single-crystal devices exhibit a
significant anisotropy of the conduction properties with respect to the
crystallographic direction. These observations indicate that the field effect
transistors fabricated on single crystals are suitable for the study of the
\textit{intrinsic} electronic properties of organic molecular semiconductors.
We conclude by indicating some directions in which near-future work should
focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on
organic semiconductor
The coupling of a hearing aid loudspeaker membrane to visco-thermal air layers
Hearing aids and their components are becoming smaller. This presents new problems for the acoustical components, such as the loudspeaker. A circular membrane of a hearing aid loudspeaker is modeled in this paper. Neglecting air influences, the membrane and its suspension behave as a mass spring system. However, under operating conditions, thin layers of air on both sides of the membrane influence its behavior. Air can enter and leave these layers at certain locations on the circular edge of the layer. Since these air layers are thin, visco-thermal effects may have to be taken into account. Therefore, the air layers are not modeled by the wave equation, but by the low reduced frequency model that takes these visco-thermal effects into account. The equations of this model are solved in a polar coordinate system, using a wave-based method. The other acoustical parts of the hearing aid loudspeaker, and the membrane itself are modeled by simple lumped models. The emphasis in this paper is on the coupling of the viscothermal air layer model to the mechanical model of the membrane. Coupling of the air layer to other acoustical parts by using an impedance as boundary condition for the layer model, is also described. The resulting model is verified by experiments. The model and the measurements match reasonably well, considering the level of approximation with lumped parts
- âŠ