892 research outputs found

    New Algebraic Formulation of Density Functional Calculation

    Full text link
    This article addresses a fundamental problem faced by the ab initio community: the lack of an effective formalism for the rapid exploration and exchange of new methods. To rectify this, we introduce a novel, basis-set independent, matrix-based formulation of generalized density functional theories which reduces the development, implementation, and dissemination of new ab initio techniques to the derivation and transcription of a few lines of algebra. This new framework enables us to concisely demystify the inner workings of fully functional, highly efficient modern ab initio codes and to give complete instructions for the construction of such for calculations employing arbitrary basis sets. Within this framework, we also discuss in full detail a variety of leading-edge ab initio techniques, minimization algorithms, and highly efficient computational kernels for use with scalar as well as shared and distributed-memory supercomputer architectures

    New Physics of the 3030^\circ Partial Dislocation in Silicon Revealed through {\em Ab Initio} Calculation

    Full text link
    Based on {\em ab initio} calculation, we propose a new structure for the fundamental excitation of the reconstructed 30^\circ partial dislocation in silicon. This soliton has a rare structure involving a five-fold coordinated atom near the dislocation core. The unique electronic structure of this defect is consistent with the electron spin resonance signature of the hitherto enigmatic thermally stable R center of plastically deformed silicon. We present the first {\em ab initio} determination of the free energy of the soliton, which is also in agreement with the experimental observation. This identification suggests the possibility of an experimental determination of the density of solitons, a key defect in understanding the plastic flow of the material.Comment: 6 pages, 5 postscript figure

    A First-Principles Study of the Electronic Reconstructions of LaAlO3/SrTiO3 Heterointerfaces and Their Variants

    Full text link
    We present a first-principles study of the electronic structures and properties of ideal (atomically sharp) LaAlO3/SrTiO3 (001) heterointerfaces and their variants such as a new class of quantum well systems. We demonstrate the insulating-to-metallic transition as a function of the LaAlO3 film thickness in these systems. After the phase transition, we find that conduction electrons are bound to the n-type interface while holes diffuse away from the p-type interface, and we explain this asymmetry in terms of a large hopping matrix element that is unique to the n-type interface. We build a tight-binding model based on these hopping matrix elements to illustrate how the conduction electron gas is bound to the n-type interface. Based on the `polar catastrophe' mechanism, we propose a new class of quantum wells at which we can manually control the spatial extent of the conduction electron gas. In addition, we develop a continuous model to unify the LaAlO3/SrTiO3 interfaces and quantum wells and predict the thickness dependence of sheet carrier densities of these systems. Finally, we study the external field effect on both LaAlO3/SrTiO3 interfaces and quantum well systems. Our systematic study of the electronic reconstruction of LaAlO3/SrTiO3 interfaces may serve as a guide to engineering transition metal oxide heterointerfaces.Comment: 50 pages, 18 figures and 4 table

    V-06.02: Laparoscopic radical cystoprostatic adenectomy

    Get PDF
    Introduction: We hereby present a new laparoscopic prostate-preserving cystectomy technique that aims at reducing sexual dysfunction and urinary incontinence in comparison with the conventional technique of laparoscopic radical cystoprostatectom

    Graph Concatenation for Quantum Codes

    Get PDF
    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.Comment: 26 pages, 12 figures. Figures of concatenated [[5,1,3]] and [[7,1,3]] are added. Submitted to JM

    Preparedness planning for pandemic influenza among large US maternity hospitals

    Get PDF
    The objective of this investigation was to determine the state of pandemic influenza preparedness and to delineate commonly reported challenges among a sample of larger US national maternity hospitals. This was done given the recent emphasis on hospital disaster planning and the disproportionate morbidity and mortality that pregnant women have suffered in previous influenza pandemics. An internet-based survey was sent to all 12 members of the Council of Women's and Infants’ Specialty Hospitals. Questions addressed hospital demographics and overall pandemic preparedness planning, including presence of a pandemic planning committee and the existence of written plans addressing communications, surge capacity, degradation of services, and advance supply planning. Nine of 12 (75%) hospitals responded. All had active pandemic planning committees with identified leadership. The majority (78%) had written formal plans regarding back-up communications, surge/overflow capacity, and degradation of services. However, fewer (44%) reported having written plans in place regarding supply-line/stockpiling of resources. The most common challenges noted were staff and supply coordination, ethical distribution of limited medical resources, and coordination with government agencies. In conclusion, the majority of the Council of Women's and Infants’ Specialty Hospitals maternity hospitals have preliminary infrastructure for pandemic influenza planning, but many challenges exist to optimize maternal and fetal outcomes during the next influenza pandemic

    Qudit versions of the qubit "pi-over-eight" gate

    Get PDF
    When visualised as an operation on the Bloch sphere, the qubit "pi-over-eight" gate corresponds to one-eighth of a complete rotation about the vertical axis. This simple gate often plays an important role in quantum information theory, typically in situations for which Pauli and Clifford gates are insufficient. Most notably, when it supplements the set of Clifford gates then universal quantum computation can be achieved. The "pi-over-eight" gate is the simplest example of an operation from the third level of the Clifford hierarchy (i.e., it maps Pauli operations to Clifford operations under conjugation). Here we derive explicit expressions for all qudit (d-level, where d is prime) versions of this gate and analyze the resulting group structure that is generated by these diagonal gates. This group structure differs depending on whether the dimensionality of the qudit is two, three or greater than three. We then discuss the geometrical relationship of these gates (and associated states) with respect to Clifford gates and stabilizer states. We present evidence that these gates are maximally robust to depolarizing and phase damping noise, in complete analogy with the qubit case. Motivated by this and other similarities we conjecture that these gates could be useful for the task of qudit magic-state distillation and, by extension, fault-tolerant quantum computing. Very recent, independent work by Campbell, Anwar and Browne confirms the correctness of this intuition, and we build upon their work to characterize noise regimes for which noisy implementations of these gates can (or provably cannot) supplement Clifford gates to enable universal quantum computation.Comment: Version 2 changed to reflect improved distillation routines in arXiv:1205.3104v2. Minor typos fixed. 12 Pages,2 Figures,3 Table
    corecore