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Qudit versions of the qubit π/8 gate
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When visualized as an operation on the Bloch sphere, the qubit π/8 gate corresponds to 1/8 of a complete
rotation about the vertical axis. This simple gate often plays an important role in quantum information theory,
typically in situations for which Pauli and Clifford gates are insufficient. Most notably, if it supplements the set
of Clifford gates, then universal quantum computation can be achieved. The π/8 gate is the simplest example of
an operation from the third level of the Clifford hierarchy (i.e., it maps Pauli operations to Clifford operations
under conjugation). Here we derive explicit expressions for all qudit (d-level, where d is prime) versions of this
gate and analyze the resulting group structure that is generated by these diagonal gates. This group structure
differs depending on whether the dimensionality of the qudit is two, three, or greater than three. We then discuss
the geometrical relationship of these gates (and associated states) with respect to Clifford gates and stabilizer
states. We present evidence that these gates are maximally robust to depolarizing and phase-damping noise, in
complete analogy with the qubit case. Motivated by this and other similarities, we conjecture that these gates
could be useful for the task of qudit magic-state distillation and, by extension, fault-tolerant quantum computing.
Very recently, independent work by Campbell et al. confirmed the correctness of this intuition, and we build
upon their work to characterize noise regimes for which noisy implementations of these gates can (or provably
cannot) supplement Clifford gates to enable universal quantum computation.
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I. BACKGROUND AND MOTIVATION

The qubit π/8 gate,

Uπ/8 =
(

e−i π
8 0

0 ei π
8

)
, (1)

plays a special role in a number of quantum informational
tasks. The Gottesman-Knill theorem [1] tells us that a
circuit using only Clifford gates and Pauli measurements
(i.e., a stabilizer circuit) is insufficient for universal quantum
computation (UQC). While, technically, adding the ability to
perform any single-qubit non-Clifford gate is sufficient for
obtaining UQC, one typically sees that the Uπ/8 is chosen
as the most natural and easiest gate with which to work
[2]. In measurement-based scenarios, supplementing Pauli
measurement directions with an additional rotated (by Uπ/8)
measurement basis can also enable the performance of new
tasks. For example, performing Pauli measurements on the
Bell state (|00〉 + |11〉)/√2, or on any two-qubit stabilizer
state, does not exhibit any better-than-classical performance
in a nonlocal Clauser-Horne-Shimony-Holt (CHSH) game
[3,4], whereas the introduction of the new rotated basis
enables the optimum quantum advantage. Measurements in the
aforementioned rotated basis appear to arise naturally in other
quantum informational tasks too, e.g., universal blind quantum
computation [5], where Pauli measurements and operators
would be insufficient.

Arguably, much of the utility of this gate arises from its
close relationship with the Clifford group, while still not
being a member of the group. In fact, Uπ/8 is the simplest
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meaningful example of a gate from the third level of the
Clifford hierarchy (defined later), the first two levels of which
correspond to Pauli gates and Clifford gates. Operations from
the Clifford hierarchy have properties that make them suitable
for teleportation-based UQC [6], transversal implementation
(see below), learning an unknown gate [7], or secure assisted
quantum computation [8]. Gates from higher levels of the
Clifford hierarchy are also related to so-called semi-Clifford
gates [9–11].

It is now known [12] that no quantum error-correcting
code allows for transversal (i.e., bitwise and manifestly fault-
tolerant) implementation of a universal set of gates. Typically,
many stabilizer codes [e.g., Calderbank-Shor-Steane (CSS)
codes] enable transversal implementation of the complete set
of Clifford gates, but only these gates. An intriguing exception
is provided by the [[15,1,3]] punctured Reed-Muller code that
allows for transversal implementation of the Uπ/8 gate, but not
the complete set of Clifford gates. Zeng et al. [13] provide quite
a detailed discussion on the relationship between Reed-Muller
codes and transversal gates from the third (or higher) level of
the Clifford hierarchy. It appeared that the transversal Uπ/8

property of the [[15,1,3]] code was useful in the derivation
of a magic-state distillation (MSD) routine by Bravyi and
Kitaev [14], a routine that iteratively distills increasing pure
copies of the state |ψUπ/8〉 = Uπ/8|+〉 ∝ |0〉 + ei π

4 |1〉.
Independently of the foregoing discussion, it is also notable

that Uπ/8 is remarkable due to its geometrical relationship
with the set of Clifford gates—it is the single-qubit unitary
U ∈ SU(2) that is farthest outside the convex hull of Clifford
operations. The associated single-qubit state |ψUπ/8〉, men-
tioned previously, is also remarkable in its convex-geometrical
relationship with Pauli eigenstates. Furthermore, these ge-
ometrical relationships have ramifications for the amount
of noise that can be tolerated by imperfect implementation
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of Uπ/8 or imperfect preparation of |ψUπ/8〉, a scenario that
arises naturally in any fault-tolerant UQC proposal that uses
magic-state distillation.

The state |ψUπ/8〉 ∝ |0〉 + ei π
4 |1〉 is already known in quan-

tum information theory as |H 〉, a qubit magic state as defined
in Refs. [14,15]. In addition, the most nonstabilizer qubit state
|T 〉 [14], in a convex-geometrical sense, is also a magic state.
Moreover, both |H 〉 and |T 〉 are eigenvectors of Clifford gates.
The importance of geometrically significant states and gates
to qubit-based fault-tolerant UQC provided the motivation
in Ref. [16] to find the most robust qudit states (for all
prime dimensions) and qudit gates (for p ∈ {2,3,5,7}). The
maximally robust states (analogous to |T 〉) were also found
to be eigenvectors of Clifford gates, whereas the maximally
robust gates had a strikingly simple form, which prompted the
question of whether these gates were related to generalized
versions of the Uπ/8 gate. Here, starting from the condition
that these gates must be diagonal elements of C3, we derive
generalized versions of Uπ/8, which we call Uυ , and show
that these are identical, up to an unimportant factor of a
Clifford gate, to the maximally robust gates found in Ref. [16].
We also show that the associated states |ψUυ

〉 = Uυ |+〉 are
eigenvectors of Clifford gates, and that they obey a similar
relationship with respect to stabilizer states as |H 〉 does.

As we completed this work, we became aware of very recent
results by Campbell et al. [17]. There, the authors prove the
existence of magic-state distillation (MSD) protocols for all
(prime) qudit systems, wherein the nonstabilizer states that are
distilled are states that we have called |ψUυ

〉 here. Moreover,
they show that Uυ have a transversal implementation in a
family of qudit Reed-Muller codes and they explain why
this property is useful in MSD. It is hoped that the results
presented here might aid in the analysis of such qudit MSD
protocols. More generally, it seems likely that the gates Uυ will
find application in other areas of quantum information theory,
particularly in qudit generalizations of qubit-based tasks for
which Uπ/8 is known to be helpful.

We begin Sec. II by deriving explicit expressions for all
qudit Uυ , and then proceed to analyze the resulting group
structure, where we note an interesting difference depending
on whether p = 2, p = 3, or p > 3. In Sec. III we discuss
geometrical features of these gates Uυ and associated qudit
states |ψUυ

〉, with a particular eye to applications in quantum
computation. We conclude in Sec. IV with some observations
on noise thresholds for qudit-based quantum computation.

II. BASIC MATHEMATICAL STRUCTURE

A. Generalized Pauli and Clifford groups

Throughout, we always assume the dimension p, of a single
particle, to be a prime number. Generalized versions of the
familiar σx and σz Pauli operators are defined [18] for p > 2
as

X|j 〉 = |j + 1 mod p〉, Z|j 〉 = ωj |j 〉, (2)

where ω = e2πi/p is a primitive pth root of unity such that
XZ = ω−1ZX. In general, products of these Pauli operators
are often called displacement operators,

D(x|z) = τ xzXxZz, τ = e(p+1)πi/p = ω2−1
, (3)

where the format of the subscript (x|z) reminds us of the
symplectic form (often used in calculations involving Pauli
operators, e.g., error-correcting codes). The Weyl-Heisenberg
group (or generalized Pauli group) for a single qudit is given
by

G = {τ cD �χ | �χ ∈ Z2
p,c ∈ Zp

}
(Zp = {0,1, . . . ,p − 1}),

(4)

where �χ is a two-vector with elements from Zp, so that |G| =
p2 in situations where global phases can be ignored. The set
of unitary operators that map the Pauli group onto itself under
conjugation is called the Clifford group,

C = {C ∈ U (p)|CGC† = G}.
The number of distinct Clifford gates for a single-qudit system
(ignoring global phases) is |C| = p3(p2 − 1).

Gottesman and Chuang [6] introduced the so-called Clif-
ford hierarchy, a recursively defined set of gates given by

Ck+1 = {U |UC1U
† ⊆ Ck}, (5)

where C1 is the Pauli group. One obtains nested sets of
operators, the first two sets of which correspond to elements
of the Pauli and Clifford groups, respectively, i.e.,

G ⊆ C ⊆ C3 ⊆ · · · , (6)

or, equivalently, in their notation,

C1 ⊆ C2 ⊆ C3 ⊆ · · · . (7)

It is known [6,9,10] that C3 (and above) does not form a group,
although the diagonal subset of C3, which we study here, does.

The complete set of Clifford unitaries C ⊂ U (p) is covered
by varying over all F ∈ SL(2,Zp) and �χ ∈ Z2

p,

C = {C(F | �χ)

∣∣ F ∈ SL(2,Zp), �χ ∈ Z2
p

}
, (8)

where SL(2,Zp) is the group whose elements are 2 × 2
matrices with unit determinant and matrix elements from Zp.
The explicit recipe [19] for constructing a Clifford unitary with
F = ( α β

γ δ ), �χ = ( x

z ) is given by

C(F | �χ) = D(x|z)VF ,
(9)

VF =
{

1√
p

∑p−1
j,k=0 τβ−1(αk2−2jk+δj 2)|j 〉〈k|, β 
= 0∑p−1

k=0 ταγ k2 |αk〉〈k|, β = 0.

Note that when F = I2, we have VF = Ip. Also,

VF D(x|z)V
†
F = D(αx+βz|γ x+δz), (10)

C(F1| �χ1)C(F2| �χ2) ∝ C(F1F2| �χ1+F1 �χ2), (11)

where the proportionality symbol denotes equality modulo a
global phase.

The particular case β = 0 of Eq. (9) turns out to be
particularly relevant to our investigation, and so we note that

det

(
p−1∑
k=0

ταγ k2 |k〉〈k|
)

= τ
αγ

6 (2p−1)(p−1)p
, (12a)

= 1 ∀ p > 3, (12b)

= τ 2αγ for p = 3, (12c)

022316-2



QUDIT VERSIONS OF THE QUBIT π/8 GATE PHYSICAL REVIEW A 86, 022316 (2012)

which has ramifications for the results in the next section.
(This peculiarity, for p = 3, was also noted by Zhu [20] in
the course of an investigation into Weyl-Heisenberg covariant,
symmetric informationally complete (SIC), positive operator-
valued measures (POVMs). In particular, we will use

C([ 1 0
γ 1

]∣∣[ x

z

]) ∈ SU(p) ∀ p > 3,

(13)
det
(
C([ 1 0

γ 1

]∣∣[ x

z

])) = τ 2γ for p = 3,

which eventually leads to an unusual group structure for qutrit
generalizations of Uπ/8.

B. Explicit form of qudit gates analogous to Uπ/8

For simplicity, and in analogy with the qubit Uπ/8 gate,
we chose Uυ (our putative higher-dimensional generalizations
of Uπ/8) to be diagonal in the computational basis, so that
UD(0|1)U

† = D(0|1). We claim that for p > 3, Uυ can be
written in the following form:

Uυ = U (υ0,υ1, . . .) =
p−1∑
j=0

ωυk |k〉〈k| (υk ∈ Zp), (14)

where ω = e
2πi
p , as usual. Note that det(Uυ) = ω

∑p−1
k=0 υk so

that Uυ ∈ SU(p) if
∑p−1

k=0 υk = 0 (mod p). A straightforward
application of Eqs. (2), (3), and (14) gives

UυD(x|z)U
†
υ = D(x|z)

∑
k ω(υk+x−υk )|k〉〈k|. (15)

If Uυ is to be a member of C3, we require the right-hand side
of Eq. (15) to be a Clifford gate. Since UυD(0|z)U

†
υ = D(0|z),

trivially, we focus on the case UυD(1|0)U
†
υ in order to derive

explicit expressions for Uυ .
Define γ ′,z′,ε′ ∈ Zp such that

UυD(1|0)U
†
υ = ωε′

C([ 1 0
γ ′ 1

]∣∣[ 1
z′
]). (16)

The fact that the right-hand side of Eq. (16) is the most general
form can be seen by reference to Eqs. (9) and (15), and
also by noting that U ∈ SU(p) implies ωkU ∈ SU(p), for any
integer k.

Note that the right-hand side of Eq. (16) represents a Pauli
operator if and only if γ ′ = 0. Consequently, Uυ must, by
definition, be a (diagonal) Clifford operation in those cases
when γ ′ = 0.

To solve the matrix equation (16), begin by substituting
Eq. (15) so that

D(1|0)

∑
k

ω(υk+1−υk )|k〉〈k| = ωε′
C([ 1 0

γ ′ 1

]∣∣[ 1
z′
]), (17)

and use Eq. (9) to obtain

D(1|0)

∑
k

ω(υk+1−υk )|k〉〈k| = ωε′
D(1|z′)

p−1∑
k=0

τ γ ′k2 |k〉〈k|. (18)

After canceling common factors of D(1|0), one is left with an
identity between two diagonal matrices so that

ωυk+1−υk = ωε′
τ z′

ωkz′
τ k2γ ′

(∀ k ∈ Zp), (19)

or, equivalently, using τ = ω2−1
,

υk+1 − υk = ε′ + 2−1z′ + kz′ + 2−1k2γ ′. (20)

This gives the recurrence relation

υk+1 = υk + k(2−1kγ ′ + z′) + 2−1z′ + ε′. (21)

With a boundary condition υ0 = 0, we can solve to obtain

υk = 1
12k{γ ′ + k[6z′ + (2k − 3)γ ′]} + kε′, (22)

where factors like 12−1 are understood to be evaluated
modulo p.

For example, with p = 5 and choosing z′ = 1,γ ′ = 4, and
ε′ = 0, we get

υ = (υ0,υ1,υ2,υ3,υ4) = (0,3,4,2,1) (23)

⇒ Uυ(z′,γ ′,ε′) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 e− 4πi
5 0 0 0

0 0 e− 2πi
5 0 0

0 0 0 e
4πi

5 0

0 0 0 0 e
2πi

5

⎞
⎟⎟⎟⎟⎟⎟⎠

. (24)

It can be shown that the powers of ω along the diagonal of Uυ

sum to zero modulo p. First use

p−1∑
k=1

υk = p(p − 1)

24
[2(5p − 1)z′ + (p − 2)(p2 − 1)γ ′],

then note that for primes p > 3, we have 24|p2 − 1 and
12|(p − 1)(5p − 1) so that

∑p−1
k=0 υk = 0 mod p. Conse-

quently, det(Uυ) = 1.
For the p = 3 case [because of Eq. (13)], we must do

a little more work to solve a matrix equation analogous to
Eq. (17). First, we introduce a global phase factor eiφ so
that det(eiφ

∑p−1
k=0 τ γ k2 |k〉〈k|) = 1, i.e., φ = 4πγ

9 . Denote a

primitive ninth root of unity as ζ = e
2πi

9 so that

det

(
ζ 2γ ′

C([ 1 0
γ ′ 1

]∣∣[ 1
z′
])

.

)
= 1.

We must permit our qutrit version of Uπ/8 to take a more
general form than that given in Eq. (14), i.e.,

Uυ = U (υ0,υ1, . . .) =
2∑

k=0

ζ υk |k〉〈k| (υk ∈ Z9).

A similar calculation as before leads to the general solution
[compare with Eq. (22)]

υ = (0,6z′ + 2γ ′ + 3ε′,6z′ + γ ′ + 6ε′) mod 9. (25)

For example, letting z′ = 1,γ ′ = 2, and ε′ = 0,

υ = (υ0,υ1,υ2) = (0,1,8) (26)

⇒ Uυ(0,1,8) =
⎛
⎝1 0 0

0 ζ 0
0 0 ζ 8

⎞
⎠ =

⎛
⎜⎝

1 0 0

0 e
2πi

9 0

0 0 e− 2πi
9

⎞
⎟⎠ .

(27)
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TABLE I. Group structure of the set of diagonal unitaries {Uυ}
under matrix multiplication.

Group No. elements of order Min. No. of
name 1 p p2 p3 generators

p = 2 Z8 1 1 2 4 1
p = 3 Z9 × Z3 1 8 18 0 2
p > 3 Z3

p 1 p3 − 1 0 0 3

One can easily check that all 27 solutions for z′,γ ′,ε′ ∈ Zp

obey
∑2

k=0 υk = 0 mod 3. However,

det(Uυ) = ζ
∑2

k=0 υk = ω(z′+γ ′),

so that ζ−(z′+γ ′)Uυ ∈ SU(3).
We finish this section by noting that knowledge of

UυD(1|0)Uυ , UυD(0|1)Uυ and Eq. (11) is sufficient to see that
the effect (modulo an overall phase) of conjugating an arbitrary
Pauli operator by Uυ is

UυD(x|z)U
†
υ ∝ C([ 1 0

xγ ′ 1

]∣∣[ x

x(z′ + 2−1γ ′(x − 1)) + z

]). (28)

C. Group structure

For p > 3, the set {Uυ} ⊂ SU(p) with matrix multiplication
satisfies all of the following prerequisites to be a group.

(1) Closure:

Uυ(z1,γ1,ε1)Uυ(z2,γ2,ε2) = Uυ(z1 + z2,γ1 + γ2,ε1 + ε2).

(2) Associativity: Obvious.
(3) Identity element: I = Uυ(0,0,0).
(4) Inverse element: U−1

υ = U−υ .
The fundamental theorem of finite Abelian groups states

that a finite Abelian group is isomorphic to a direct product of
cyclic groups of prime-power order. Furthermore, two finite
Abelian groups G,G′ are isomorphic, G ∼= G′, if and only if
they have identical structure order, i.e., if G and G′ have the
same number of elements of each order. We can use this fact
to classify the groups that are generated by all diagonal gates
{Uυ |∀ z′,γ ′,ε′ ∈ Zp} under matrix multiplication (see Table I
for a summary). For p = 2, the gate Uπ/8 is sufficient to
generate the entire group isomorphic toZ8. For p > 3, we have

({Uυ},·) ∼= (Z3
p, + ), (29)

which tells us, among other things, that the minimal number
of generators required to generate this group is 3.

For p = 3, one can check explicitly that the gates
U (z′,γ ′,ε′) form a group, and that

Uυ(z1,γ1,ε1)Uυ(z2,γ2,ε2)

=
{
Uυ(z1 + z2,γ1 + γ2,ε1 + ε2) if γ1 + γ2 < 3,

Uυ(z1 + z2,γ1 + γ2,ε1 + ε2 − 1) if γ1 + γ2 � 3.

(30)

The orders of the individual group elements are

ord (Uυ(0,0,0)) = 1, (31)

ord (Uυ(z′,0,ε′)) = 3 [excluding case (31)],

ord (Uυ(z′,γ ′,ε′)) = 9 [excluding cases (31) and (32)]. (32)

In fact, for p = 3, we have

({Uυ},·) ∼= Z9 × Z3, (33)

i.e., the group is a direct product of cyclic groups of order 9
and 3. This group requires only two generators.

The result, given by Eq. (13), has led to an unusual group
structure for p = 3 compared to other primes. Combined with
observations from other authors [19–21] on SIC-POVMs in
p = 3, perhaps it could be argued that in the context of
quantum information, 3 is the second oddest prime of all [22].

III. GEOMETRICAL FEATURES

In this section, we outline various geometrical properties
of the gates Uυ and associated states |ψUυ

〉 [as defined below
in Eq. (35)]. Section III A provides the various definitions
required for this section. In Sec. III B, we show that the
states |ψUυ

〉 are eigenvectors of Clifford gates. This may be
of independent interest. In Sec. III C, we relate both Uυ and
|ψUυ

〉 to the convex hulls of Clifford gates and stabilizer states,
respectively. The reason we do so is twofold: (i) We will see
how Uυ and |ψUυ

〉 are singled out as being maximally non-
Clifford or nonstabilizer in some sense, which is interesting in
and of itself. (ii) The preceding geometrical property implies
that these gates are optimal in the sense of robustness to
depolarizing and phase-damping noise. This latter property
should prove useful in the context of fault-tolerant quantum
computation, as we discuss in Sec. IV.

A. Useful definitions

As discussed in Sec. II C, the set of gates {Uυ} forms a finite
group. In fact, they form a finite subgroup, {Uυ} ⊂ {Uθ }, of
the group of diagonal gates {Uθ } defined as

Uθ =
p−1∑
k=0

eiθk |k〉〈k| (θk ∈ R). (34)

We will often have reason to refer to a state |ψUθ
〉 ∈ Cp that

is very naturally associated with the gate Uθ via

|ψUθ
〉 = 1√

p
diag(Uθ ) = Uθ |+〉, (35)

where |+〉 = (1,1, . . . ,1)/
√

p. A Jamiołkowski state, |JU 〉 ∈
Cp2

, corresponding to a unitary operation U ∈ U (p) is denoted

|JU 〉 = (I ⊗ U )
p−1∑
j=0

|jj 〉√
p

. (36)

A quantum operation E is a superoperator acting upon density
operators (i.e., generic quantum states ρ ∈ Hp) via

E : ρin �→ ρout, i.e., ρout = E(ρin). (37)

The well-known Jamiołkowski isomorphism tells us that
a complete description of E is encapsulated in a higher-
dimensional state �E defined as

�E = [I ⊗ E]

⎛
⎝ p−1∑

j,k=0

|j,j 〉〈k,k|
p

⎞
⎠ , (38)
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which is the most general form of the operation-state duality
given in Eq. (36).

B. Eigenvectors of Clifford gates

As discussed in Sec. II B, we have an explicit form for
p3 diagonal gates Uυ(z′,γ ′,ε′) (with z′,γ ′,ε′ ∈ Zp), of which
p2(p − 1), corresponding to γ ′ 
= 0, are non-Clifford. Here
we prove that each associated state |ψU (z′,γ ′,ε′)〉 as defined in
Eq. (35) is an eigenvector of the Clifford operator,

C([ 1 0
γ ′ 1

]∣∣[ 1
z′
]),

with eigenvalue ωε′
. Our intuition was that knowledge of such

eigenstates should prove useful since both |T 〉 and |H 〉 (qubit
magic states as defined in Ref. [14]) are Clifford eigenstates.
The recent result by Campbell et al. [17], whereby states that
we call |ψUυ

〉 are shown to be qudit magic states, confirms the
correctness of this intuition. In addition, Zauner’s conjecture
[23] states that fiducial vectors of a Weyl-Heisenberg-covariant
SIC-POVM lie in the eigenspace of a particular class of
Clifford gates. While the results obtained here are not directly
applicable to the resolution of the SIC-POVM problem, they
may still prove useful in this context.

To prove the claim, first use Eq. (16) to perform the
following substitution:

C([ 1 0
γ ′ 1

]∣∣[ 1
z′
])|ψU (z′,γ ′,ε′)〉 = ω−εUυD(1|0)U

†
υ |ψU (z′,γ ′,ε′)〉,

(39)

and subsequently use

U †
υ |ψUυ

〉 = U †
υ (Uυ |+〉) = |+〉,

where |+〉 is the +1 eigenstate of D(1|0), by definition. Clearly,
it follows that

C([ 1 0
γ ′ 1

]∣∣[ 1
z′
])|ψU (z′,γ ′,ε′)〉 = ω−ε′ |ψU (z′,γ ′,ε′)〉. (40)

C. Noise thresholds for quantum computation using Uυ gates
and stabilizer operations

In this section, we show how the gates Uυ and states
|ψUυ

〉 are exceptional with respect to their convex-geometrical
relationship to Clifford gates and stabilizer states, respectively.
We will need to define the stabilizer polytope (the convex hull
of stabilizer states), the Clifford polytope (the convex hull of
Clifford gates), and a quantity we call negativity (which can
be interpreted as a measure of distance outside one of these
polytopes). In the present context, a state or gate that is farther
outside a polytope generally requires more noise (a higher
degree of impurity) to enter said polytope. To this end, we
introduce a quantity called robustness, which measures the
amount of noise that can be tolerated before a gate (state)
becomes expressible as a mixture of Clifford gates (stabilizer
states). Table II summarizes most of the results in this section.
How these results were obtained is explored in the remainder
of this section.

1. Stabilizer polytope and Clifford polytope

For a single-qudit system, there are exactly p(p + 1)
distinct eigenstates of Pauli operators. For p = 2, these

TABLE II. Robustness and negativity: Robustness to noise (ε�
D

for depolarizing, ε�
PD for phase damping) of a gate U is the noise rate

at which a noisy implementation of U enters the Clifford polytope.
Negativity can be used as a proxy for distance outside the relevant
(stabilizer or Clifford) polytope and is formally defined in Eq. (43)
(states) and Eq. (49) (gates). A priori, there is no obvious reason why
N (|ψUυ

〉) and N (|JUυ
〉) should obey such a simple relationship with

one another. In Ref. [16], it was shown that Uυ were the most robust
to depolarizing noise of all U ∈ U (p) (in dimensions two to seven,
and with some caveats regarding an incomplete facet description of
the Clifford polytope). Here we show (for p ∈ {2,3,5,7}) that Uυ are
also the most robust to phase-damping noise of all Uθ . The discussion
in Sec. III C3 shows that this must also imply that |ψUυ

〉 are the most
robust states (to depolarizing) of all states |ψUθ

〉.

ε�
D(Uυ ) ε�

PD(Uυ ) N (|ψUυ
〉) N (|JUυ

〉)
p = 2 45.32% 14.65% 0.1036 2(0.1036) = 0.2071
p = 3 78.63% 36.73% 0.1363 3(0.1363) = 0.4089
p = 5 95.24% 64.00% 0.1600 5(0.1600) = 0.8000
p = 7 97.63% 73.27% 0.1202 7(0.1202) = 0.8411

eigenstates correspond to the vertices of the octahedron
depicted in Fig. 1(a). The Gottesman-Knill theorem tells us
that a supply of stabilizer states, or mixtures of stabilizer states,
are useless for the task of promoting a stabilizer circuit to a
circuit capable of UQC. As such, the set of all probabilistic
mixtures of stabilizer states is an interesting geometric object.
It is defined as

Pstab =
{

ρ

∣∣∣∣ ρ =
p(p+1)∑

i=1

qi

∣∣ψ (i)
stab

〉 〈
ψ (i)

stab

∣∣} , (41)

with 0 � qi � 1,
∑p(p+1)

i=1 qi = 1, where qi can be understood
as probabilities and |ψ (i)

stab
〉 are the aforementioned Pauli

eigenstates (stabilizer states).
The convex hull of a finite set of points forms what

is generally known as a polytope (a higher-dimensional
generalization of a polyhedron). Using the Minkowski-Weyl
theorem, we know that every such polytope has a description in
terms of a finite number of facets (bounding inequalities, also
known as half spaces). In the present context, it is known [24]
that exactly pp+1 facets (which we denote A) are required to
describePstab. More precisely, testing a state ρ for membership
of the polytope Pstab leads to the following condition:

ρ ∈ Pstab ⇐⇒ min
u∈Zp+1

p

Tr [A(u)ρ] � 0. (42)

If a state ρ is outside Pstab, then we define the negativity [27]
of the state, N (ρ), as

N (ρ) = ∣∣ min
u∈Zp+1

p

Tr [A(u)ρ]
∣∣. (43)

The threshold depolarizing rate ε�
D(|ψUθ

〉) of a state |ψUθ
〉 is

the minimum value of εD required to make |ψUθ
〉 an element

of Pstab:

ε�
D(|ψUθ

〉) = min εD (0 � εD � 1), (44)

such that (1 − εD)|ψUθ
〉〈ψUθ

| + εD
I
p

∈ Pstab. The quantities
N (ρ) and ε�

D(ρ) are (inversely) related, as discussed in
Ref. [16].
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|ψUυ|+

|0

|1
(a)

|JUυ

|JC(Fk| k)

(b)

χ

FIG. 1. Geometry of states and operations: Filled circles (ver-
tices) correspond to stabilizer states or Clifford gates, respectively.
(a) Polytope of stabilizer states: A single qudit has p(p + 1) stabilizer
states, the convex hull of which comprises a polytope with pp+1 faces.
The states |ψUυ

〉 are the farthest outside the polytope of all states |ψUθ
〉

[defined in Eq. (35)]. For p = 2, the stabilizer polytope corresponds
to an octahedron (as depicted) with six vertices and eight faces. In
this dimension, |ψUυ

〉 = |H 〉, which is the magic state introduced by
Refs. [14,15]. Recent results by Campbell et al. [17] show that |ψUυ

〉
is a magic state for all p. (b) Polytope of Clifford gates: A schematic
picture [the object is actually (p2 − 1)2 dimensional] of the polytope
whose vertices correspond to Clifford gates. It is known with certainty
in p = 2, and with a high degree of plausibility in p ∈ {3,5,7} [16],
that the gates Uυ are farthest outside the Clifford polytope of all
U ∈ U (p). Here, each unitary gate, Uυ or C(F | �χ ) ∈ C [refer to Eq. (8)],
is represented by its Jamiołkowski state [as defined in Eq. (36)].

An explicit definition for individual facets A(u) is given by

A(u) = 1

p

⎛
⎝�(0|1)[u0] +

p∑
j=1

�(1|j−1)[uj ] − I

⎞
⎠ , (45)

where �(a|b)[k] is the projector onto the ωk eigenspace of XaZb,
i.e.,

�(a|b)[k] = 1

d
[I + ω−kXaZb + · · · + ω−(p−1)k(XaZb)p−1].

(46)

Using the Jamiołkowski isomorphisms of Eqs. (36) and
(38), we can construct an object (polytope) that is analogous to
Pstab, but where the vertices now correspond to Clifford gates
rather than stabilizer states. As before, quantum operations that
are expressible as a mixture of Clifford operations are useless
for the task of promoting a stabilizer circuit to a circuit that is
capable of UQC. We denote this so-called Clifford polytope

as [16,28]

PCliff =
⎧⎨
⎩�E

∣∣∣∣�E =
j=p(p2−1),k=p2∑

j=1,k=1

qj,k

∣∣JC(Fj | �χk )

〉 〈
JC(Fj | �χk )

∣∣
⎫⎬
⎭ ,

(47)

with 0 � qj,k � 1,
∑j=p(p2−1),k=p2

j=1,k=1 qj,k = 1.
Testing an arbitrary quantum operation E for membership

of the Clifford polytope requires construction of the associated
Jamiołkowski state �E [as described in Eq. (38)] and then using

�E ∈ PCliff ⇐⇒ Tr(W�E ) � 0 (∀ W ∈ W), (48)

where W is a finite set of facets describing PCliff . Analogously
to Eq. (43), we define the negativity of an operation E as

N (�E ) = | min
W∈W

Tr[W�E ]|. (49)

The threshold depolarizing rate ε�
D(Uθ ) of a gate Uθ is the

minimum value of εD required to make Uθ an element of
PCliff :

ε�
D(Uθ ) = min εD (0 � εD � 1), (50)

such that (1 − εD)|JUθ
〉〈JUθ

| + εD
I
p2 ∈ PCliff . While W is

known to exist and be finite, the complexity of half-space
enumeration is such that we can only claim to have derived in
Ref. [16] (at least) a subset of W . Nevertheless, if a given �E
(encoding an operation E) satisfies Tr (W�E ) < 0 for some
W ∈ W , then this operation is unambiguously outside the
Clifford polytope.

2. Robustness to depolarizing noise, i.e., maximally
non-Clifford gates

In Ref. [16], a gate Uopt ∈ U(p) was found, for each of p ∈
{2,3,5,7}, which required very high amounts of depolarizing
noise to become expressible as a mixture of Clifford gates.
There, it was suggested that the simple form of Uopt and
their high robustness to noise [i.e., high ε�

D in Eq. (54)] made
them analogous to the qubit Uπ/8 gate in some sense. Here
we strengthen the analogy by showing that Uopt are actually
equivalent (i.e., the same up to a factor of a Clifford gate) to the
gates Uυ that we have derived by enforcing that they should
be diagonal elements of C3.

The state |JUopt〉 that is farthest outsidePCliff (i.e., the convex
polytope whose vertices are Clifford gates) is that state which
achieves

min
W∈W,U∈SU(p)

Tr (W |JU 〉〈JU |) , (51)

whereW is the bounding set of facets that describesPCliff . Here
we give the explicit relationship between highly (and maybe
maximally) robust gates given in Ref. [16] and the generalized
versions of Uπ/8 that we have described in Sec. II B:

p = 2 : Uopt = Uπ/8,

p = 3 : Uopt = UυC([−1 0
0 −1

]
|
[ 0

0

]) [Uυ in Eq. (27)],

p = 5 : Uopt = UυC([−1 0
−1 −1

]∣∣[ 0
3

]) [Uυ in Eq. (24)],

p = 7 : Uopt = UυC([−1 0
2 −1

]∣∣[ 0
2

])
[with Uυ = Uυ(z′ = 1,γ ′ = 2,ε′ = 0)].
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The Clifford gates that relate Uopt and Uυ can be absorbed into
W , creating another W ′ ∈ W with the same spectrum, and

Tr(W ′|JUυ
〉〈JUυ

|) = Tr(W |JUυC〉〈JUυC |), (52)

so that the negativity and robustness results from Ref. [16]
apply here too.

3. Phase-damping thresholds via simplified
Jamiolkowski isomorphism

Phase damping is a physically well-motivated noise process
(often interpreted as resulting from so-called phase kicks)
whose overall effect on a state ρ is to uniformly decrease the
amplitude of all off-diagonal elements in ρ (see, e.g., [33]).
The implementation of a diagonal gate Uθ , while suffering
phase-damping noise (with noise rate εPD), results in an overall
operation

E(ρ) = (1 − εPD)UθρU
†
θ + εPD

p − 1

p−1∑
k=1

(ZkUθ )ρ(ZkUθ )†

(53a)

= (1 − εPD)UθρU
†
θ + εPD

p − 1
(I − UθρU

†
θ ), (53b)

so that the robustness to phase-damping noise, ε�
PD(Uθ ), of a

gate Uθ is

ε�
PD(Uθ ) = min εPD (0 � εPD � 1), (54)

such that �E ∈ PCliff , with E as in Eq. (53a).
Given a diagonal gate Uθ [as defined in Eq. (34)], it is trivial

to see that the state |ψUθ
〉 [as defined in Eq. (35)] provides a

complete description of the gate. A quantum process consisting
of a probabilistic mixture of various different diagonal gates
Uθ is thus representable by a quantum state,

ρ =
∑

i

qi

∣∣ψ (i)
Uθ

〉 〈
ψ

(i)
Uθ

∣∣ (0 � qi � 1,
∑

i

qi = 1

)
. (55)

Effectively, this is a simplified form of the Jamiołkowski
isomorphism [given in Eq. (38)] that is only possible because
our allowed operations are highly restricted. With that said,
the operation in Eq. (53a) can equally well be represented by
a single-qudit state:

ρ = (1 − εPD)
∣∣ψUθ

〉 〈
ψUθ

∣∣+ εPD

p − 1

p−1∑
k=1

∣∣ψZkUθ

〉 〈
ψZkUθ

∣∣
= (1 − εPD)

∣∣ψUθ

〉 〈
ψUθ

∣∣+ εPD

p − 1

(
I − ∣∣ψUθ

〉 〈
ψUθ

∣∣).
To summarize, a noisy (phase-damped) implementation of Uθ

can be identified as a state of the form given by Eq. (55).
As discussed in Sec. II B, there are exactly p2 diagonal

Clifford gates, corresponding to Uυ(z′,0,ε′), and each such
gate corresponds to a state |ψUυ

〉. These p2 states comprise
the vertices of a polytope of dimension p(p − 1) contained in
the space spanned by Eq. (55). For example [and consulting
Fig. 1(a)], in the p = 2 case, one sees that the (two-
dimensional) x-y plane of the octahedron contains p2 =
4 vertices. Checking the negativity (distance outside this
polytope) of a given state amounts to evaluating its expectation
value with respect to all pp = 4 facets that comprise the
polytope boundary (i.e., the four edges of the octahedron that

are contained in the x-y plane). Of all states |ψUθ
〉, the one

farthest outside this polytope is |ψUπ/8〉. The general expression
for all pp distinct facets of this p(p − 1)-dimensional polytope
(which we call Aedge) is

Aedge(u1,u2, . . . ,up) = 1

p

p−1∑
u0=0

A(u0,u1, . . . ,up) (56a)

= 1

p

⎛
⎝ p∑

j=1

�(1|j−1)[uj ] − I

p

⎞
⎠ , (56b)

where A are the facets of Pstab as defined in Eq. (45).
The final element that is required is to realize that an oper-

ation Uθ that is maximally robust to phase-damping noise is
exactly the operation for which |ψUθ

〉 is most resistant to depo-
larizing noise before entering the p(p − 1)-dimensional poly-
tope discussed above. In fact, a simple calculation shows that

ε�
PD(Uθ ) = p − 1

p
ε�
D

(∣∣ψUθ

〉)
,

where ε�
PD(Uθ ) is the phase-damping noise rate required to

make Uθ enter the convex hull of diagonal Clifford gates,
and ε�

D(|ψUθ
〉) is the depolarizing noise rate required to make

|ψUθ
〉 enter the convex hull of stabilizer states.

Any facet Aedge can be decomposed as

Aedge =
∑

j

λj |λj 〉〈λj | (λ1 � λ2 · · · ), (57)

and the state |λ1〉 is the state that, out of all qudit states ρ, max-
imally violates Tr

[
Aedgeρ

]
� 0. A simple calculation shows

that the minimum eigenvalue of Aedge (over all possible Aedge)
is λ1(Aedge) = −(p − 1)/p2, when p is an odd prime. Conse-
quently, if λ1 = −(p − 1)/p2, and |λ1〉 is of the form |ψUθ

〉,
then |λ1〉 is maximally robust to depolarizing noise, and the
operation Uθ that |λ1〉 represents is maximally robust to phase-
damping noise. This is the case for p ∈ {2,5} in our current
investigation. For p ∈ {3,7}, the states |λ1〉 that achieve λ1 =
−(p − 1)/p2 are not of the form |ψUθ

〉, and so we had to resort
to a numerical optimization over all Aedge and all states |ψUθ

〉.
For p = 3, there are two distinct types of edge, as classified

by spectrum:

λ(Aedge) =
{
−2

9
,
1

9
,
4

9

}
or

λ(Aedge) =
{

1

9

(
3 sin

π

18
−

√
3 cos

π

18

)
,

1

9

(
1 + 3 sin

π

18
−

√
3 cos

π

18

)
,

1

9

(
1 + 2

√
3 cos

π

18

)}
.

There are p2(p − 1) = 18 of the latter Aedge, where the
minimizing eigenvector for each distinct facet corresponds
to a distinct non-Clifford Uυ . In p = 5, there are exactly
p2(p − 1) = 100 edges with spectrum

λ(Aedge) = {−0.16,−0.08361,0.04,0.04,0.36361},
and these correspond to the 100 non-Clifford Uυ . In p = 7,
there are at least 2(72) = 98 facets Aedge with minimal
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eigenvalue −0.12016, whose corresponding eigenvector is of
the form |ψUυ

〉. These were the most robust states of all |ψUθ
〉

that we could find by optimization, but it is possible that we
became trapped in a local minimum.

As a final comment, we note that the qubit form of this
argument (simplified Jamiołkowski isomorphism, etc.) was
presented by Virmani et al. [29] (see also [30]), where an
adversarial phase-damping model was used to obtain upper
bounds on the quantum fault-tolerance threshold. In that case,
it was found that

[14.7% ≈ ε�
PD(Uπ/8)] = 1

2

[
ε�
D

(∣∣ψUπ/8

〉) ≈ 29.3%
]
, (58)

which implies that the Uπ/8 gate, while maximally robust
among all diagonal gates, requires about 15% phase-damping
noise before it becomes expressible as a mixture of (diagonal)
Clifford gates.

IV. APPLICATIONS IN FAULT-TOLERANT
QUANTUM COMPUTING

In Ref. [17], Campbell et al. quote results by Nebe et al.
[34,35], which show that the gate set

〈C,CSUM,U 〉 (59)

is dense in SU(pn), where C is the set of single-qudit Cliffords,
CSUM (controlled-SUM) is the generalized version of the CNOT

(controlled-NOT) gate, and U is a non-Clifford single-qudit
gate,

CSUM : |a〉|b〉 �→ |a〉|a + b mod p〉, (60)

U ∈ SU(p)\C. (61)

In particular, Uυ is sufficient to promote multiqudit Clifford
gates to a universal gate set. We expect that Uυ possesses
all of the additional qualities that makes Uπ/8 the preferred
non-Clifford gate in qubit-based universal gate sets.

In Refs. [2,18], it is argued, for the qubit case, that creation
of a Clifford eigenstate should be easier to do in a fault-tolerant
manner than fault-tolerant implementation of Uυ directly. It is
easy to see that for an arbitrary qudit state |ψarb〉,

�(0,0|1,d−1)[0]
(∣∣ψUυ

〉⊗ |ψarb〉
) = (Uυ |ψarb〉) ⊗ |0〉,

where �(0,0|1,d−1)[0] denotes a rank-p projector onto the
ω0 eigenspace of the operator Z ⊗ Z−1 (i.e., a stabilizer
measurement). Clearly, creation of Clifford eigenstates |ψUυ

〉
(see Sec. III B) is sufficient to promote a stabilizer circuit to
UQC in the qudit case too.

In Ref. [17], Campbell et al. introduce a qudit gate M of
the form

M (p) =
p−1∑
j=0

e
2πi

p2 λj |j 〉〈j |, (62)

with λj = p

(
j

3

)
− j

(
p

3

)
+
(

p + 1

4

)
. (63)

Note that

M (3) = Uυ(z′ = 1,γ ′ = 1,ε′ = 0), (64)

M (5) = Uυ(z′ = 2,γ ′ = 1,ε′ = 2), (65)

M (7) = Uυ(z′ = 3,γ ′ = 1,ε′ = 4), (66)

|+〉 E(|ψUυ 〉, ε) (1 − ε) |ψUυ 〉〈ψUυ | + εp

(a)

|+〉

|0〉 E(|ψUυ 〉, ε)

|0〉

(1 − ε′) |ψUυ 〉〈ψUυ | + ε′ p

Π

(b)

FIG. 2. Dilution of noise in magic-state preparation: (a) Straight-
forward magic-state preparation, using the superoperator E(|ψUυ 〉,ε) to
prepare an imperfect (depolarized) version of a magic state |ψUυ

〉.
(b) Postselected magic-state preparation, using the same superop-
erator E(|ψUυ 〉,ε) to create a less imperfect (ε′ < ε) version of the
magic state |ψUυ

〉. The Pauli measurement operator � stands for
postselection on receiving the outcome +1 using the measurement
�(0,0|1,p−1)[0] [see Eq. (62)]. The circuit elements to the left of �

implement the creation of the Jamiołkowski state �E [see Eq. (38)]
describing E(|ψUυ 〉,ε).

in our notation. They showed that |M (p)
0 〉, which correspond

to |ψUυ
〉 defined in Eq. (35), are distillable for all prime di-

mensions and hence are magic states. For p = 3, a distillation
routine with remarkably good performance was found and we
use this result in the discussion below.

If we have access to a superoperator E(|ψUυ 〉,ε) defined as

E(|ψUυ 〉,ε)(ρ) = (1 − ε)UυρU †
υ + ε

I

p
, (67)

then it can be used to create noisy versions of |ψUυ
〉 in a

straightforward way, as depicted in Fig. 2(a). However, a
simple circuit given in Fig. 2(b) shows how a less noisy
version of |ψUυ

〉 can be created by using the same operation
E(|ψUυ 〉,ε), as well as some additional stabilizer operations. The
straightforward method produces a state |ψUυ

〉 with effective
depolarization rate ε, whereas the postselected version pro-
duces |ψUυ

〉 with effective depolarization rate ε′(< ε). The
relationship between the effective noise rates is

ε = pε′

1 + (p − 1)ε′ (68)

and, inverted,

ε′ = ε

p − (p − 1)ε
. (69)

In Ref. [17], it was shown that for p = 3, depolarized
versions of |ψUυ

〉 could be distilled for noise rates up to about
32%. The implication is that a superoperator E(|ψUυ 〉,ε) enables
universal quantum computation (via MSD) up to noise rates
of around 58%. This is found by solving

ε

3 − 2ε
= 0.3165 (70)

⇒ ε = 0.5815. (71)

Our results in Sec. III C2 and [16] indicate that E(|ψUυ 〉,ε)

can never enable universal quantum computation (by sup-
plementing Clifford gates) for noise rates ε � 78.6%. In
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TABLE III. Noise thresholds for universal quantum computation:
If supplementing the set of Clifford gates, which are presumed to
be perfect, with a depolarized version of Uυ [as in Eq. (67)], then
there exist regimes of the noise parameter ε for which UQC is
either provably possible or provably impossible. Noise rates between
these two bounds are those for which we currently have no proof
regarding the utility of depolarized Uυ when supplementing stabilizer
operations. Lower bounds are evaluated by using the results of
Campbell et al. [17], along with the noise dilution protocol of Fig. 2
and Eq. (69). Upper bounds are established via geometrical arguments
in Sec. III C2 and [16].

Lower bound Upper bound

p = 2 45.32% 45.32%
p = 3 58.15% 78.63%
p = 5 80.61% 95.20%
p = 7 72.24% 97.63%

the qubit case, it was shown, using similar arguments, by
Reichardt [31] and Buhrman et al. [28] (and more generally
in Ref. [32]), that the noise rates for which E(|ψUπ/8 〉,ε) was
outside the Clifford polytope were exactly those noise rates
for which E(|ψUπ/8 〉,ε) could supplement Clifford gates to enable
universality. It is an interesting open question for qutrit systems
as to whether the operation E(|ψUυ 〉,ε) with noise rates in the
range 58.15% < ε < 78.6% can enable universal quantum
computation. All of the above techniques can, in principle,
be applied to any prime dimensional |ψUυ

〉, and we present a
summary in Table III for dimensions p ∈ {2,3,5,7}. Indeed,
the performance of the p = 5 MSD routine is such that the
gap between upper and lower bounds in Table III is even
smaller in this case. If additional qudit MSD routines are
developed, then the lower bounds of Table III can potentially
be raised. Similarly, if an analogous scenario to that of bound
nonstabilizer states [26,36] also holds for operations, then the
upper bounds in Table III can potentially be lowered.

V. SUMMARY AND OPEN QUESTIONS

Motivated by the utility and geometric prominence of
the qubit Uπ/8 gate, we provided an explicit solution for
all diagonal qudit gates that displayed the same relationship
with the Clifford group (i.e., we constructed diagonal gates
from the third level of the Clifford hierarchy). We saw that
these diagonal gates generated a finite group whose structure
depended upon whether p = 2, p = 3, or p > 3. It might be
interesting to fully enumerate all of the single-qudit elements
of C3, or analyze the structure of the diagonal subset of Ck

(particularly for p = 3). Geometrically, these generalized Uπ/8

gates, which we have called Uυ , appear to display the same
relationship with the set of Clifford gates—a relationship
which makes them maximally non-Clifford in some sense.
The state |ψUυ

〉 ∈ Cp, defined as |ψUυ
〉 = Uυ |+〉, was already

known to be useful and geometrically significant in the p = 2
case (where it is widely known as the |H 〉-type magic state),
and we discussed some properties of the general qudit case
which led us to believe they could also be useful. As we
completed this work, we became aware of results by Campbell
et al. [17] which show that states |ψUυ

〉 are indeed magic states
for all prime dimensions. In the final section, we use the results
of Campbell et al. to show noise rates for which noisy versions
of Uυ can and cannot provide UQC (when supplementing the
full set of Clifford gates). A very interesting problem is to
further close the gap between these noise regimes, a gap that
is nonexistent in the qubit case.
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