2,648 research outputs found

    Conditional quantum dynamics with several observers

    Full text link
    We consider several observers who monitor different parts of the environment of a single quantum system and use their data to deduce its state. We derive a set of conditional stochastic master equations that describe the evolution of the density matrices each observer ascribes to the system under the Markov approximation, and show that this problem can be reduced to the case of a single "super-observer", who has access to all the acquired data. The key problem - consistency of the sets of data acquired by different observers - is then reduced to the probability that a given combination of data sets will be ever detected by the "super-observer". The resulting conditional master equations are applied to several physical examples: homodyne detection of phonons in quantum Brownian motion, photo-detection and homodyne detection of resonance fluorescence from a two-level atom. We introduce {\it relative purity} to quantify the correlations between the information about the system gathered by different observers from their measurements of the environment. We find that observers gain the most information about the state of the system and they agree the most about it when they measure the environment observables with eigenstates most closely correlated with the optimally predictable {\it pointer basis} of the system.Comment: Updated version: new title and contents. 22 pages, 8 figure

    Unconditional Pointer States from Conditional Master Equations

    Get PDF
    When part of the environment responsible for decoherence is used to extract information about the decohering system, the preferred {\it pointer states} remain unchanged. This conclusion -- reached for a specific class of models -- is investigated in a general setting of conditional master equations using suitable generalizations of predictability sieve. We also find indications that the einselected states are easiest to infer from the measurements carried out on the environment.Comment: 4 pages, 3 .eps figures; final version to appear in Phys.Rev.Let

    Topological Schr\"odinger cats: Non-local quantum superpositions of topological defects

    Full text link
    Topological defects (such as monopoles, vortex lines, or domain walls) mark locations where disparate choices of a broken symmetry vacuum elsewhere in the system lead to irreconcilable differences. They are energetically costly (the energy density in their core reaches that of the prior symmetric vacuum) but topologically stable (the whole manifold would have to be rearranged to get rid of the defect). We show how, in a paradigmatic model of a quantum phase transition, a topological defect can be put in a non-local superposition, so that - in a region large compared to the size of its core - the order parameter of the system is "undecided" by being in a quantum superposition of conflicting choices of the broken symmetry. We demonstrate how to exhibit such a "Schr\"odinger kink" by devising a version of a double-slit experiment suitable for topological defects. Coherence detectable in such experiments will be suppressed as a consequence of interaction with the environment. We analyze environment-induced decoherence and discuss its role in symmetry breaking.Comment: 7 pages, 4 figure

    Testing quantum adiabaticity with quench echo

    Full text link
    Adiabaticity of quantum evolution is important in many settings. One example is the adiabatic quantum computation. Nevertheless, up to now, there is no effective method to test the adiabaticity of the evolution when the eigenenergies of the driven Hamiltonian are not known. We propose a simple method to check adiabaticity of a quantum process for an arbitrary quantum system. We further propose a operational method for finding a uniformly adiabatic quench scheme based on Kibble-Zurek mechanism for the case when the initial and the final Hamiltonians are given. This method should help in implementing adiabatic quantum computation.Comment: This is a new version. Some typos in the New Journal of Physics version have been correcte

    Adiabatic-Impulse approximation for avoided level crossings: from phase transition dynamics to Landau-Zener evolutions and back again

    Full text link
    We show that a simple approximation based on concepts underlying the Kibble-Zurek theory of second order phase transition dynamics can be used to treat avoided level crossing problems. The approach discussed in this paper provides an intuitive insight into quantum dynamics of two level systems, and may serve as a link between the theory of dynamics of classical and quantum phase transitions. To illustrate these ideas we analyze dynamics of a paramagnet-ferromagnet quantum phase transition in the Ising model. We also present exact unpublished solutions of the Landau-Zener like problems.Comment: 12 pages & 6 figures, minor corrections, version accepted in Phys. Rev.

    Probabilities from envariance?

    Full text link
    Zurek claims to have derived Born's rule noncircularly in the context of an ontological no-collapse interpretation of quantum states, without any "deus ex machina imposition of the symptoms of classicality." After a brief review of Zurek's derivation it is argued that this claim is exaggerated if not wholly unjustified. In order to demonstrate that Born's rule arises noncircularly from deterministically evolving quantum states, it is not sufficient to assume that quantum states are somehow associated with probabilities and then prove that these probabilities are given by Born's rule. One has to show how irreducible probabilities can arise in the context of an ontological no-collapse interpretation of quantum states. It is argued that the reason why all attempts to do this have so far failed is that quantum states are fundamentally algorithms for computing correlations between possible measurement outcomes, rather than evolving ontological states.Comment: To appear in IJQI; 9 pages, LaTe

    Quantum decoherence and classical correlations of the harmonic oscillator in the Lindblad theory

    Full text link
    In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence and classical correlations of a harmonic oscillator interacting with a thermal bath. The transition from quantum to classical behaviour of the considered system is analyzed and it is shown that the classicality takes place during a finite interval of time. We calculate also the decoherence time and show that it has the same scale as the time after which statistical fluctuations become comparable with quantum fluctuations.Comment: 24 pages, 8 figure

    A simple example of "Quantum Darwinism": Redundant information storage in many-spin environments

    Full text link
    As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of "the fittest information" (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment's role in the quantum-classical transition beyond the traditional paradigm of decoherence.Comment: 21 pages, 6 figures, RevTex 4. Submitted to Foundations of Physics (Asher Peres Festschrift

    Quantum Chaotic Environments, The Butterfly Effect, And Decoherence

    Get PDF
    We investigate the sensitivity of quantum systems that are chaotic in a classical limit, to small perturbations of their equations of motion. This sensitivity, originally studied in the context of defining quantum chaos, is relevant to decoherence in situations when the environment has a chaotic classical counterpart.Comment: 4 pages, 3 figure
    • …
    corecore