29 research outputs found

    NASA thrusts in high-speed aeropropulsion research and development: An overview

    Get PDF
    NASA is conducting aeronautical research over a broad range of Mach numbers. In addition to the advanced conventional takeoff or landing (CTOL) propulsion research described elsewhere, NASA Lewis has intensified its efforts towards propulsion technology for selected high speed flight applications. In a companion program, NASA Langley has also accomplished significant research in supersonic combustion ramjet (SCRAM) propulsion. An unclassified review is presented of the propulsion research results that are applicable for supersonic to hypersonic vehicles. This overview not only provides a preview of the more detailed presentations which follow, it also presents a viewpoint on future research directions by calling attention to the unique cycles, components, and facilities involved in this expanding area of work

    Propulsion technology challenges for turn-of-the-century commercial aircraft

    Get PDF
    This paper highlights the efforts being performed or sponsored by NASA, in cooperation with the U.S. civil aviation industry, to address the propulsion system technological challenges that must be met in order to ensure a viable future for the industry. Both the subsonic and supersonic aeropropulsion programs are considered. Subsonic transport propulsion program elements, including ultra-high-bypass-ratio turbofans with attendant noise reduction efforts, high-efficiency cores, and combustor emissions reductions are discussed in terms of goals, technical issues, and problem solutions. Similarly, the high-speed research propulsion efforts addressing a high-speed commercial transport are reviewed in terms of environmental barrier issues, such as oxides of nitrogen and noise reduction, and the related economic issues

    NASA/industry advanced turboprop technology program

    Get PDF
    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987

    Performance deterioration of commercial high-bypass ratio turbofan engines

    Get PDF
    The results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analyses of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed

    Cannabis in medicine: a national educational needs assessment among Canadian physicians

    Get PDF
    Background: There is increasing global awareness and interest in the use of cannabis for therapeutic purposes (CTP). It is clear that health care professionals need to be involved in these decisions, but often lack the education needed to engage in informed discussions with patients. This study was conducted to determine the educational needs of Canadian physicians regarding CTP. Methods: A national needs assessment survey was developed based on previous survey tools. The survey was approved by the Research Ethics Board of the McGill University Health Centre Research Institute and was provided online using LimeSurvey®. Several national physician organizations and medical education organizations informed their members of the survey. The target audience was Canadian physicians. We sought to identify and rank using 5-point Likert scales the most common factors involved in decision making about using CTP in the following categories: knowledge, experience, attitudes, and barriers. Preferred educational approaches and physician demographics were collected. Gap analysis was conducted to determine the magnitude and importance of differences between perceived and desired knowledge on all decision factors. Results: Four hundred and twenty six responses were received, and physician responses were distributed across Canada consistent with national physician distribution. The most desired knowledge concerned “potential risks of using CTP” and “safety, warning signs and precautions for patients using CTP”. The largest gap between perceived current and desired knowledge levels was “dosing” and “the development of treatment plans”. Conclusions: We have identified several key educational needs among Canadian physicians regarding CTP. These data can be used to develop resources and educational programs to support clinicians in this area, as well as to guide further research to inform these gaps

    Cannabis in medicine: a national educational needs assessment among Canadian physicians

    Get PDF
    BACKGROUND: There is increasing global awareness and interest in the use of cannabis for therapeutic purposes (CTP). It is clear that health care professionals need to be involved in these decisions, but often lack the education needed to engage in informed discussions with patients. This study was conducted to determine the educational needs of Canadian physicians regarding CTP. METHODS: A national needs assessment survey was developed based on previous survey tools. The survey was approved by the Research Ethics Board of the McGill University Health Centre Research Institute and was provided online using LimeSurvey®. Several national physician organizations and medical education organizations informed their members of the survey. The target audience was Canadian physicians. We sought to identify and rank using 5-point Likert scales the most common factors involved in decision making about using CTP in the following categories: knowledge, experience, attitudes, and barriers. Preferred educational approaches and physician demographics were collected. Gap analysis was conducted to determine the magnitude and importance of differences between perceived and desired knowledge on all decision factors. RESULTS: Four hundred and twenty six responses were received, and physician responses were distributed across Canada consistent with national physician distribution. The most desired knowledge concerned “potential risks of using CTP” and “safety, warning signs and precautions for patients using CTP”. The largest gap between perceived current and desired knowledge levels was “dosing” and “the development of treatment plans”. CONCLUSIONS: We have identified several key educational needs among Canadian physicians regarding CTP. These data can be used to develop resources and educational programs to support clinicians in this area, as well as to guide further research to inform these gaps

    Test Set-Up for the Cooling of Heavy Magnets by Controlled Way Down to 77 K

    No full text
    In the scope of the High Field Magnets work package of the European FP7-EuCARD project, the structure of the future dipole magnet RMC and FRESCA2 has been tested at liquid nitrogen temperature replacing the actual Nb3_{3}Sn-based coils by aluminium dummy coils. Such test aims at measuring during the cooling the evolution of the mechanical stresses and the temperatures via compensated strain gauges and carbon-ceramic sensors placed at various locations on the structure (shell, rods, yokes, dummy coils). These measurements help assess the thermo-mechanical behaviour of the assembly for different applied pre-stresses and validate the finite element simulation of the magnet cooling before including the definitive brittle Nb3_{3}Sn coils. For this purpose, a specific cool-down/warm-up nitrogen test station has been built up at CERN in order to control the required maximum temperature gradient in the magnet during both cooling and warming. In this paper, we present in detail the test facility, the instrumentation along with the automatic process control system. An analytical approach computing the expected temperature evolution during a thermal cycle is introduced and the temperature measurements related to the magnets cooling down to 77 K and warm up to room temperature are presented
    corecore