37 research outputs found

    New Noncovalent Inhibitors of Penicillin-Binding Proteins from Penicillin-Resistant Bacteria

    Get PDF
    BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for beta-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. METHODOLOGY/PRINCIPAL FINDINGS: Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. CONCLUSIONS: We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.Eur-Intafa

    Assay platform for clinically relevant metallo-beta-lactamases

    Get PDF
    Metallo-β-lactamases (MBLs) are a growing threat to the use of almost all clinically used β-lactam antibiotics. The identification of broad-spectrum MBL inhibitors is hampered by the lack of a suitable screening platform, consisting of appropriate substrates and a set of clinically relevant MBLs. We report procedures for the preparation of a set of clinically relevant metallo-β-lactamases (i.e., NDM-1 (New Delhi MBL), IMP-1 (Imipenemase), SPM-1 (São Paulo MBL), and VIM-2 (Verona integron-encoded MBL)) and the identification of suitable fluorogenic substrates (umbelliferone-derived cephalosporins). The fluorogenic substrates were compared to chromogenic substrates (CENTA, nitrocefin, and imipenem), showing improved sensitivity and kinetic parameters. The efficiency of the fluorogenic substrates was exemplified by inhibitor screening, identifying 4-chloroisoquinolinols as potential pan MBL inhibitors

    Synthesis and evaluation of 3-(dihydroxyboryl)benzoic acids as D,D-carboxypeptidase R39 inhibitors.

    No full text
    Penicillin binding proteins (PBPs) catalyze steps in the biosynthesis of bacterial cell walls and are the targets for the beta-lactam antibiotics. Non-beta-lactam based antibiotics that target PBPs are of interest because bacteria have evolved resistance to the beta-lactam antibiotics. Boronic acids have been developed as inhibitors of the mechanistically related serine beta-lactamases and serine proteases; however, they have not been explored extensively as PBP inhibitors. Here we report aromatic boronic acid inhibitors of the D,D-carboxypeptidase R39 from Actinomadura sp. strain. Analogues of an initially identified inhibitor [3-(dihydroxyboryl)benzoic acid 1, IC(50) 400 microM] were prepared via routes involving pinacol boronate esters, which were deprotected via a two-stage procedure involving intermediate trifluorborate salts that were hydrolyzed to provide the free boronic acids. 3-(Dihydroxyboryl)benzoic acid analogues containing an amide substituent in the meta, but not ortho position were up to 17-fold more potent inhibitors of the R39 PBP and displayed some activity against other PBPs. These compounds may be useful for the development of even more potent boronic acid based PBP inhibitors with a broad spectrum of antibacterial activity

    Synthesis and biological evaluation of potential threonine synthase inhibitors: Rhizocticin A and Plumbemycin A

    No full text
    Rhizocticins and Plumbemycins are natural phosphonate antibiotics produced by the bacterial strains Bacillus subtilis ATCC 6633 and Streptomyces plumbeus, respectively. Up to now, these potential threonine synthase inhibitors have only been synthesized under enzymatic catalysis. Here we report the chemical stereoselective synthesis of the non-proteinogenic (S,Z)-2-amino-5-phosphonopent-3-enoic acid [(S,Z)-APPA] and its use for the synthesis of Rhizocticin A and Plumbemycin A. In this work, (S,Z)-APPA was synthesized via the Still-Gennari olefination starting from Garner's aldehyde. The Michaelis-Arbuzov reaction was used to form the phosphorus-carbon bond. Oligopeptides were prepared using liquid phase peptide synthesis (LPPS) and were tested against selected bacteria and fungi.info:eu-repo/semantics/publishe

    Fully automated radiosynthesis of N1-[18F]fluoroethyl-tryptophan and study of its biological activity as a new potential substrate for indoleamine 2,3-dioxygenase PET imaging

    No full text
    Introduction Indoleamine 2,3-dioxygenase (IDO) catalyzes the initial step in the catabolism of l-tryptophan along the kynurenine pathway and exerts immunosuppressive properties in inflammatory and tumor tissues by blocking locally T-lymphocyte proliferation. Recently, 1-(2-[19F]fluoroethyl)-dl-tryptophan (1-[19F]FE-dl-Trp) was reported as a good and specific substrate of this enzyme. Herein, the radiosynthesis of its radioactive isotopomer (1-[18F]FE-dl-Trp, dl-[18F]5) is presented along with in vitro enzymatic and cellular uptake studies. Methods The one-pot n.c.a. radiosynthesis of this novel potential PET imaging tracer, including HPLC purification and formulation, has been fully automated on a FASTlab™ synthesizer. Chiral separation of both isomers and their formulation were implemented on a second cassette. In vitro enzymatic and cellular uptake studies were then conducted with the d-, l- and dl-radiotracers. Results The radiolabeling of the tosylate precursor was performed in DMF (in 5 min; RCY: 57% (d.c.), n = 3). After hydrolysis, HPLC purification and formulation, dl-[18F]5 was obtained with a global radiochemical yield of 18 ± 3% (not decay corrected, n = 7, in 80 min) and a specific activity of 600 ± 180 GBq/μmol (n = 5). The subsequent separation of l- and d-enantiomers was performed by chiral HPLC and both were obtained after formulation with an RCY (d.c.) of 6.1% and 5.8%, respectively. In vitro enzymatic assays reveal that l-[18F]5 is a better substrate than d-[18F]5 for human IDO. In vitro cellular assays show an IDO-specific uptake of the racemate varying from 30% to 50% of that of l-[18F]5, and a negligible uptake of d-[18F]5. Conclusion In vitro studies show that l-[18F]5 is a good and specific substrate of hIDO, while presenting a very low efflux. These results confirm that l-[18F]5 could be a very useful PET radiotracer for IDO expressing cells in cancer imaging

    UDP-N-acetyl-α-D-glucosamine as acceptor substrate of β-1,4-galactosyltransferase : Enzymatic synthesis of UDP-N-acetyllactosamine

    No full text
    The capacity of UDP-N-acetyl-α-D-glucosamine (UDP-GlcNAc) as an in vitro acceptor substrate for β-1,4-galactosyltransferase (β4GalT1, EC 2.4.1.38) from human and bovine milk and for recombinant human β4GalT1, expressed in Saccharomyces cerevisiae, was evaluated. It turned out that each of the enzymes is capable to transfer Gal from UDP-α-D-galactose (UDP-Gal) to UDP-GlcNAc, affording Gal(β1-4)GlcNAc(α1-UDP (UDP-LacNAc). Using β4GalT1 from human milk, a preparative enzymatic synthesis of UDP-LacNAc was carried out, and the product was characterized by fast-atom bombardment mass spectrometry and 1H and 13C NMR spectroscopy. Studies with all three β4GalTs in the presence of α-lactalbumin showed that the UDP-LacNAc synthesis is inhibited and that UDP-α-D-glucose is not an acceptor substrate. This is the first reported synthesis of a nucleotide-activated disaccharide, employing a Leloir glycosyltransferase with a nucleotide-activated monosaccharide as acceptor substrate. Interestingly, in these studies β4GalT1 accepts an α-glycosidated GlcNAc derivative. The results imply that α4GalT1 may be responsible for the biosynthesis of UDP-LacNAc, previously isolated from human milk

    UDP-N-acetyl-α-D-glucosamine as acceptor substrate of β-1,4-galactosyltransferase : Enzymatic synthesis of UDP-N-acetyllactosamine

    No full text
    The capacity of UDP-N-acetyl-α-D-glucosamine (UDP-GlcNAc) as an in vitro acceptor substrate for β-1,4-galactosyltransferase (β4GalT1, EC 2.4.1.38) from human and bovine milk and for recombinant human β4GalT1, expressed in Saccharomyces cerevisiae, was evaluated. It turned out that each of the enzymes is capable to transfer Gal from UDP-α-D-galactose (UDP-Gal) to UDP-GlcNAc, affording Gal(β1-4)GlcNAc(α1-UDP (UDP-LacNAc). Using β4GalT1 from human milk, a preparative enzymatic synthesis of UDP-LacNAc was carried out, and the product was characterized by fast-atom bombardment mass spectrometry and 1H and 13C NMR spectroscopy. Studies with all three β4GalTs in the presence of α-lactalbumin showed that the UDP-LacNAc synthesis is inhibited and that UDP-α-D-glucose is not an acceptor substrate. This is the first reported synthesis of a nucleotide-activated disaccharide, employing a Leloir glycosyltransferase with a nucleotide-activated monosaccharide as acceptor substrate. Interestingly, in these studies β4GalT1 accepts an α-glycosidated GlcNAc derivative. The results imply that α4GalT1 may be responsible for the biosynthesis of UDP-LacNAc, previously isolated from human milk

    Glycosyl transferase activity of the Escherichia coli penicillin-binding protein 1b: specificity profile for the substrate

    No full text
    The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D-Glu-meso-A2pm-D-Ala-D-Ala units (lipid II) into linear peptidoglycan chains. These units are linked, at C1 of N-acetylmuramic acid (MurNAc), to a C55 undecaprenyl pyrophosphate. In an in vitro assay, lipid II functions both as a glycosyl donor and as a glycosyl acceptor substrate. Using substrate analogues, it is suggested that the specificity of the enzyme for the glycosyl donor substrate differs from that for the acceptor. The donor substrate requires the presence of both N-acetylglucosamine (GlcNAc) and MurNAc and a reactive group on C1 of the MurNAc and does not absolutely require the lipid chain which can be replaced by uridine. The enzyme appears to prefer an acceptor substrate containing a polyprenyl pyrophosphate on C1 of the MurNAc sugar. The problem of glycan chain elongation that presumably proceeds by the repetitive addition of disaccharide peptide units at their reducing end is discussed.status: publishe
    corecore