310 research outputs found

    Unlocking the potential of retinoic acid in anticancer therapy

    Get PDF
    All-trans-retinoic acid (ATRA) is a physiologically active metabolite of vitamin A. Its antitumour activities have been extensively studied in a variety of model systems and clinical trials; however, to date the only malignancy responsive to ATRA treatment is acute promyelocytic leukaemia (APL) where it induces complete remission in the majority of cases when administered in combination with light chemotherapy and/or arsenic trioxide. After decades of studies, the efficacy of ATRA to treat other acute myeloid leukaemia (AML) subtypes and solid tumours remains poor. Recent studies directed to improve ATRA responsiveness in non-APL AML seem to indicate that the lack of effective ATRA response in these tumours may be primarily due to aberrant epigenetics, which negatively affect ATRA-regulated gene expression and its antileukaemic activity. Epigenetic reprogramming could potentially restore therapeutic effects of ATRA in all AML subtypes. This review discusses the current progresses in the understanding how ATRA can be utilised in the therapy of non-APL AML and other cancers

    Murine isoforms of retinoic acid receptor gamma with specific patterns of expression.

    Full text link
    We have characterized seven murine retinoic acid receptor gamma cDNA isoforms (mRAR-gamma 1 to -gamma 7) generated by alternative splicing of at least seven exons. These isoforms differ from one another in their 5' untranslated region and in two cases (mRAR-gamma 1 and -gamma 2) differ in their N-terminal A region, which is known to be important for differential transactivation by other nuclear receptors. mRAR-gamma 1 and -gamma 2, the predominant isoforms, are differentially expressed in adult tissues and during embryogenesis. Most notably, skin contains almost exclusively mRAR-gamma 1 transcripts. The conservation of the RAR-gamma isoforms from mouse to human together with their patterns of expression suggests that they perform specific functions, which may account for the pleiotropic effect of retinoic acid in embryogenesis and development

    Dual inhibition of EZH2 and G9A/GLP histone methyltransferases by HKMTI-1-005 promotes differentiation of acute myeloid leukemia cells.

    Get PDF
    All-trans-retinoic acid (ATRA)-based differentiation therapy of acute promyelocytic leukemia (APL) represents one of the most clinically effective examples of precision medicine and the first example of targeted oncoprotein degradation. The success of ATRA in APL, however, remains to be translated to non-APL acute myeloid leukemia (AML). We previously showed that aberrant histone modifications, including histone H3 lysine 4 (H3K4) and lysine 27 (H3K27) methylation, were associated with this lack of response and that epigenetic therapy with small molecule inhibitors of the H3K4 demethylase LSD1/KDM1A could reprogram AML cells to respond to ATRA. Serving as the enzymatic component of Polycomb Repressive Complex 2, EZH2/KMT6A methyltransferase plays a critical role in normal hematopoiesis by affecting the balance between self-renewal and differentiation. The canonical function of EZH2 is methylation of H3K27, although important non-canonical roles have recently been described. EZH2 mutation or deregulated expression has been conclusively demonstrated in the pathogenesis of AML and response to treatment, thus making it an attractive therapeutic target. In this study, we therefore investigated whether inhibition of EZH2 might also improve the response of non-APL AML cells to ATRA-based therapy. We focused on GSK-343, a pyridone-containing S-adenosyl-L-methionine cofactor-competitive EZH2 inhibitor that is representative of its class, and HKMTI-1-005, a substrate-competitive dual inhibitor targeting EZH2 and the closely related G9A/GLP H3K9 methyltransferases. We found that treatment with HKMTI-1-005 phenocopied EZH2 knockdown and was more effective in inducing differentiation than GSK-343, despite the efficacy of GSK-343 in terms of abolishing H3K27 trimethylation. Furthermore, transcriptomic analysis revealed that in contrast to treatment with GSK-343, HKMTI-1-005 upregulated the expression of differentiation pathway genes with and without ATRA, while downregulating genes associated with a hematopoietic stem cell phenotype. These results pointed to a non-canonical role for EZH2, which was supported by the finding that EZH2 associates with the master regulator of myeloid differentiation, RARα, in an ATRA-dependent manner that was enhanced by HKMTI-1-005, possibly playing a role in co-regulator complex exchange during transcriptional activation. In summary, our results strongly suggest that addition of HKMTI-1-005 to ATRA is a new therapeutic approach against AML that warrants further investigation

    Early Detection of t(8;21) Chromosomal Translocations During Treatment of PML-RARA Positive Acute Promyelocytic Leukemia: A Case Study

    Get PDF
    Here we describe a female patient who developed acute promyelocytic leukemia (APL) characterized by t(l5;17) translocation at diagnosis. The patient began treatment with all-trans retinoic acid (ATRA) + chemotherapy. During follow up, the patient was found to be negative for the t(15;17) transcript after 3 months of therapy which remained undetectable, thereafter. However, the emergence of a small clone with a t(8;21) abnormality was observed in the bone marrow and peripheral blood (PB) cells between 3 and 18 months following treatment initiation. The abnormal translocation observed in PB cells obtained at 3 months was detected after the second cycle of consolidation therapy and reappeared at 15 months during maintenance treatment, a period without ATRA. Although based on a single case, we conclude that genetic screening of multiple translocations in AML patients should be requested to allow early identification of other emerging clones during therapy that may manifest clinically following treatment

    Phase resolved observation of spin wave modes in antidot lattices

    Get PDF
    Antidot lattices have proven to be a powerful tool for spin wave band structure manipulation. Utilizing time-resolved scanning transmission x-ray microscopy, we are able to experimentally image edge-localized spin wave modes in an antidot lattice with a lateral confinement down to < 80 nm x 130 nm. At higher frequencies, spin wave dragonfly patterns formed by the demagnetizing structures of the antidot lattice are excited. Evaluating their relative phase with respect to the propagating mode within the antidot channel reveals that the dragonfly modes are not directly excited by the antenna but need the propagating mode as an energy mediator. Furthermore, micromagnetic simulations reveal that additional dispersion branches exist for a tilted external field geometry. These branches correspond to asymmetric spin wave modes that cannot be excited in a non-tilted field geometry due to the symmetry restriction. In addition to the band having a negative slope, these asymmetric modes also cause an unexpected transformation of the band structure, slightly reaching into the otherwise empty bandgap between the low frequency edge modes and the fundamental mode. The presented phase resolved investigation of spin waves is a crucial step for spin wave manipulation in magnonic crystals
    corecore