43 research outputs found

    Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein

    Get PDF
    Human metapneumovirus (hMPV) is a leading cause of acute lower respiratory tract infections in high-risk populations, yet there are no vaccines or anti-viral therapies approved for the prevention or treatment of hMPV-associated disease. Here, we used a high-throughput single-cell technology to interrogate memory B cell responses to the hMPV fusion (F) glycoprotein in young adult and elderly donors. Across all donors, the neutralizing antibody response was primarily directed to epitopes expressed on both pre- and post-fusion F conformations. However, we identified rare, highly potent broadly neutralizing antibodies that recognize pre-fusion-specific epitopes and structurally characterized an antibody that targets a site of vulnerability at the pre-fusion F trimer apex. Additionally, monotherapy with neutralizing antibodies targeting three distinct antigenic sites provided robust protection against lower respiratory tract infection in a small animal model. This study provides promising monoclonal antibody candidates for passive immunoprophylaxis and informs the rational design of hMPV vaccine immunogens.We acknowledge the Immune Monitoring and Flow Cytometry Resource (IMFCSR) at the Norris Cotton Cancer Center at Dartmouth supported by NCI Cancer Center Support Grant 5P30CA023108-41. This work was funded in part by Welch Foundation grant number F-0003-19620604.S

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted

    Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine

    No full text
    A comprehensive understanding of the development and evolution of human B cell responses duced by pathogen exposure will facilitate the design of next-generation vaccines. Here, we utilized a gh-throughput single B cell cloning technology to longitudinally track the human B cell response to the llow fever virus 17D (YFV-17D) vaccine. The earlymemory B cell (MBC) response was mediated by both assical immunoglobulin M (IgM) (IgM(+)CD27(+)) and switched immunoglobulin (swIg(+)) MBC pulations; however, classical IgM MBCs waned rapidly, whereas swIg(+) and atypical IgM(+) and IgD(+) MBCs were stable over time. Affinity maturation continued for 6 to 9 mo following vaccination, providing evidence for the persistence of germinal center activity long after the period of active viral replication in peripheral blood. Finally, a substantial fraction of the neutralizing antibody response was mediated by public clones that recognize a fusion loop-proximal antigenic site within domain II of the viral envelope glycoprotein. Overall, our findings provide a framework for understanding the dynamics and complexity of human B cell responses elicited by infection and vaccination

    Genotype-specific features reduce the susceptibility of South American yellow fever virus strains to vaccine-induced antibodies

    No full text
    The resurgence of yellow fever in South America has prompted vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a live-attenuated YF-17D virus derived from a virulent African isolate. The capacity of these vaccines to induce neutralizing antibodies against the vaccine strain is used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. We show that antiviral potency of the polyclonal antibody response in vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to amino acid changes at two sites in central domain II of the glycoprotein E, including multiple changes at the domain I-domain II hinge, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for updating vaccines
    corecore