53 research outputs found
Viscosity of liquid GaxNi100-x alloys
Structure of liquid Sb-Sn alloys were studied by means of viscosity measurements and X-ray diffraction. Structural factors and pair correlation functions were analyzed and interpreted using the random atomic distribution model. The features of temperature dependence of the viscosity coefficient were analyzed taking into account X-ray diffraction patterns. The results allow us to conclude that Sb atoms substitute for Sn atoms, forming a typical atomic solution, which reveals chemical and topological short-range order. Moreover, certain atoms form Sb- and Sn-based SbnSnm associates and self-associates.peer-reviewe
Structural studies of liquid Co–Sn alloys
AbstractAn analysis of the structure features of liquid Co–Sn alloys has been performed by means of X-ray diffraction method, viscosity coefficient analysis and computer simulation method. The X-ray diffraction investigations were carried out over a wide concentration range at the temperature 1473K. It was found that the structure of these alloys can be described in the frame of independent X-ray scattering model. The viscosity coefficient was calculated by an excess entropy scaling and compared with experimental data
TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer
Transforming growth factor β (TGFβ) is a pluripotent cytokine promoting epithelial cell plasticity during morphogenesis and tumour progression. TGFβ binding to type II and type I serine/threonine kinase receptors (TβRII and TβRI) causes activation of different intracellular signaling pathways. TβRI is associated with the ubiquitin ligase tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6). Here we show that TGFβ, via TRAF6, causes Lys63-linked polyubiquitination of TβRI, promoting cleavage of TβRI by TNF-alpha converting enzyme (TACE), in a PKCζ-dependent manner. The liberated intracellular domain (ICD) of TβRI associates with the transcriptional regulator p300 to activate genes involved in tumour cell invasiveness, such as Snail and MMP2. Moreover, TGFβ-induced invasion of cancer cells is TACE- and PKCζ- dependent and the TβRI ICD is localized in the nuclei of different kinds of tumour cells in tissue sections. Thus, our data reveal a specific role for TβRI in TGFβ mediated tumour invasion
BRCA1 Interacts with Smad3 and Regulates Smad3-Mediated TGF-β Signaling during Oxidative Stress Responses
BRCA1 is a key regulatory protein participating in cell cycle checkpoint and DNA damage repair networks. BRCA1 plays important roles in protecting numerous cellular processes in response to cell damaging signals. Transforming growth factor-beta (TGF-beta) is a potent regulator of growth, apoptosis and invasiveness of tumor cells. TFG-beta activates Smad signaling via its two cell surface receptors, the TbetaRII and ALK5/TbetaRI, leading to Smad-mediated transcriptional regulation.Here, we report an important role of BRCA1 in modulating TGF-beta signaling during oxidative stress responses. Wild-type (WT) BRCA1, but not mutated BRCA1 failed to activate TGF-beta mediated transactivation of the TGF-beta responsive reporter, p3TP-Lux. Further, WT-BRCA1, but not mutated BRCA1 increased the expression of Smad3 protein in a dose-dependent manner, while silencing of WT-BRCA1 by siRNA decreased Smad3 and Smad4 interaction induced by TGF-beta in MCF-7 breast cancer cells. BRCA1 interacted with Smad3 upon TGF-beta1 stimulation in MCF-7 cells and this interaction was mediated via the domain of 298-436aa of BRCA1 and Smad3 domain of 207-426aa. In addition, H(2)O(2) increased the colocalization and the interaction of Smad3 with WT-BRCA1. Interestingly, TGF-beta1 induced Smad3 and Smad4 interaction was increased in the presence of H(2)O(2) in cells expressing WT-BRCA1, while the TGF-beta1 induced interaction between Smad3 and Smad4 was decreased upon H(2)O(2) treatment in a dose-dependent manner in HCC1937 breast cancer cells, deficient for endogenous BRCA1. This interaction between Smad3 and Smad4 was increased in reconstituted HCC1937 cells expressing WT-BRCA1 (HCC1937/BRCA1). Further, loss of BRCA1 resulted in H(2)O(2) induced nuclear export of phosphor-Smad3 protein to the cytoplasm, resulting decreased of Smad3 and Smad4 interaction induced by TGF-beta and in significant decrease in Smad3 and Smad4 transcriptional activities.These results strongly suggest that loss or reduction of BRCA1 alters TGF-beta growth inhibiting activity via Smad3 during oxidative stress responses
p53 Target Gene SMAR1 Is Dysregulated in Breast Cancer: Its Role in Cancer Cell Migration and Invasion
Tumor suppressor SMAR1 interacts and stabilizes p53 through phosphorylation at its serine-15 residue. We show that SMAR1 transcription is regulated by p53 through its response element present in the SMAR1 promoter. Upon Doxorubicin induced DNA damage, acetylated p53 is recruited on SMAR1 promoter that allows activation of its transcription. Once SMAR1 is induced, cell cycle arrest is observed that is correlated to increased phospho-ser-15-p53 and decreased p53 acetylation. Further we demonstrate that SMAR1 expression is drastically reduced during advancement of human breast cancer. This was correlated with defective p53 expression in breast cancer where acetylated p53 is sequestered into the heterochromatin region and become inaccessible to activate SMAR1 promoter. In a recent report we have shown that SMAR1 represses Cyclin D1 transcription through recruitment of HDAC1 dependent repressor complex at the MAR site of Cyclin D1 promoter. Here we show that downmodulation of SMAR1 in high grade breast carcinoma is correlated with upregulated Cyclin D1 expression. We also established that SMAR1 inhibits tumor cell migration and metastases through inhibition of TGFβ signaling and its downstream target genes including cutl1 and various focal adhesion molecules. Thus, we report that SMAR1 plays a central role in coordinating p53 and TGFβ pathways in human breast cancer
Calorimetric studies of Cu–Li, Li–Sn, and Cu–Li–Sn
AbstractIntegral molar enthalpies of mixing were determined by drop calorimetry for Cu–Li–Sn at 1073K along five sections xCu/xSn≈1:1, xCu/xSn≈2:3, xCu/xSn≈1:4, xLi/xSn≈1:1, and xLi/xSn≈1:4. The integral and partial molar mixing enthalpies of Cu–Li and Li–Sn were measured at the same temperature, for Li–Sn in addition at 773K. All binary data could be described by Redlich–Kister-polynomials. Cu–Li shows an endothermic mixing effect with a maximum in the integral molar mixing enthalpy of ∼5300J·mol−1 at xCu=0.5, Li–Sn an exothermic minimum of ∼ −37,000J·mol−1 at xSn∼0.2. For Li–Sn no significant temperature dependence between 773K and 1073K could be deduced. Our measured ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Chou is given
Correlation between diffraction and viscosity data for Bi-Ga molten alloys
This work was supported by a grant from the Fundamental Researches State Fund of Ukraine (No. F 28/329-2009).Structure of Bi(100-x)Ga(x)molten alloys containing 38 center dot 5, 50, 70 and 91 center dot 5 at. % Ga has been studied by means of X-ray diffraction method and compared with viscosity measurements data. Significant changes in the structure factor profile were observed in vicinity of the concentration 70 at. % Ga. The dynamic viscosity coefficient was calculated by use of a statistical atomic distribution model and a Born-Green kinetic theory. The concentration dependence of viscosity is in agreement with change of structure parameters obtained from diffraction data
- …