5,339 research outputs found
Enhancement of laser cooling by the use of magnetic gradients
We present a laser cooling scheme for trapped ions and atoms using a
combination of laser couplings and a magnetic gradient field. In a
Schrieffer-Wolff transformed picture, this setup cancels the carrier and blue
sideband terms completely resulting in an improved cooling behaviour compared
to standard cooling schemes (e.g. sideband cooling) and allowing cooling to the
vibrational ground state. A condition for optimal cooling rates is presented
and the cooling behaviour for different Lamb-Dicke parameters and spontaneous
decay rates is discussed. Cooling rates of one order of magnitude less than the
trapping frequency are achieved using the new cooling method. Furthermore the
scheme turns out to be robust under deviations from the optimal parameters and
moreover provides good cooling rates also in the multi particle case.Comment: 14 pages, 8 figure
Trapped ion chain as a neural network
We demonstrate the possibility of realizing a neural network in a chain of
trapped ions with induced long range interactions. Such models permit to store
information distributed over the whole system. The storage capacity of such
network, which depends on the phonon spectrum of the system, can be controlled
by changing the external trapping potential and/or by applying longitudinal
local magnetic fields. The system properties suggest the possibility of
implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure
Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices
We observed the coulomb blockade phenomena in ferromagnetic contacting single
wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was
observed with existing only the Zeeman splitting at 4K. Combining with other
effects, the ferromagnetic leads prevent the orbital spin states splitting with
magnetic field up to 2 Tesla at 4K. With increasing magnetic field further,
both positive or negative coulomb peaks shift slopes are observed associating
with clockwise and anticlockwise orbital state splitting. The strongly
suppressed/enhanced of the conductance has been observed associating with the
magnetic field induced orbital states splitting/converging
Systematics of the odd-even effect in the resonance ionization of Os and Ti
Measurements of the odd-even effect in the mass spectrometric analysis of Ti and
Os isotopes by resonance ionization mass spectrometry have been performed for ΔJ = + 1, 0 and -1 transitions. Under saturating conditions of the ionization and for ΔJ = + 1 transitions odd-even
effects are reduced below the 0.5% level. Depending on the polarization state of the laser large
odd isotope enrichments are observed for ΔJ = 0 and -1 transitions which can be reduced below
the 0.5% level by depolarization of the laser field
Systematics of isotope ratio measurements with resonant laser photoionization sources
Sources of laser-induced even-even and odd-even isotopic selectivity in the resonance ionization mass
spectroscopy of Os and Ti have been investigated experimentally for various types of transitions. A set
of conditions with regard to laser bandwidth and frequency tuning, polarization state and intensity was
obtained for which isotopic selectivity is either absent or reduced below the 2 % level
Anomalous Hall effect and weak localization corrections in a ferromagnet
In this paper, we report results on the anomalous Hall effect. First, we
summarize analytical calculations based on the Kubo formalism : explicit
expressions for both skew-scattering and side-jump are derived and
weak-localization corrections are discussed. Next, we present numerical
calculations of the anomalous Hall resistivity based on the Dirac equation.
Qualitative agreement with experiments is obtained.Comment: Proceeding JEMS'0
- …
