16 research outputs found

    The DNA Replication Initiation Machinery as a Target for Cancer Diagnosis and Therapy

    Get PDF
    Cancer is a leading cause of death worldwide. Early, accurate detection of malignancy leads to better treatment decisions and there is consequently an urgent need for new cancer biomarkers. This thesis explores the use of the DNA replication initiation machinery as a target for the development of molecular biomarkers able to provide diagnostic and prognostic information in the clinical setting and to guide treatment decisions. In a large scale multicentre study, the DNA replicative helicase protein Mcm5 is shown to be a sensitive and specific biomarker for bladder cancer detection. Further clinical studies demonstrate that Mcm5 is potentially useful for the detection of prostate and pancreaticobiliary tract cancers. In conjunction with markers of mitotic progression and DNA ploidy status, replication initiation proteins are also shown to be able to provide prognostic information in the context of penile cancer. Mcm5 is a component of the DNA replicative helicase, which is phosphorylated by the cell cycle kinase Cdc7 as a crucial step during DNA replication initiation. The work described here demonstrates that depletion of Cdc7 in a normal human diploid cell line induces a novel origin activation checkpoint at the core of which there are a number of tumour suppressor and proto-oncogene proteins that are fre

    Diagnosis of prostate cancer by detection of minichromosome maintenance 5 protein in urine sediments

    Get PDF
    Background: The accuracy of prostate-specific antigen (PSA) testing in prostate cancer detection is constrained by low sensitivity and specificity. Dysregulated expression of minichromosome maintenance (Mcm) 2–7 proteins is an early event in epithelial multistep carcinogenesis and thus MCM proteins represent powerful cancer diagnostic markers. In this study we investigate Mcm5 as a urinary biomarker for prostate cancer detection. Methods: Urine was obtained from 88 men with prostate cancer and from two control groups negative for malignancy. A strictly normal cohort included 28 men with complete, normal investigations, no urinary calculi and serum PSA <2 ng ml–1. An expanded control cohort comprised 331 men with a benign final diagnosis, regardless of PSA level. Urine was collected before and after prostate massage in the cancer patient cohort. An immunofluorometric assay was used to measure Mcm5 levels in urine sediments. Results: The Mcm5 test detected prostate cancer with 82% sensitivity (confidence interval (CI)= 72–89%) and with a specificity ranging from 73 (CI=68–78%) to 93% (CI=76–99%). Prostate massage led to increased Mcm5 signals compared with pre-massage samples (median 3440 (interquartile range (IQR) 2280 to 5220) vs 2360 (IQR <1800 to 4360); P=0.009), and was associated with significantly increased diagnostic sensitivity (82 vs 60%; P=0.012). Conclusions: Urinary Mcm5 detection seems to be a simple, accurate and noninvasive method for identifying patients with prostate cancer. Large-scale prospective trials are now required to evaluate this test in diagnosis and screening

    Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in bile aspirates

    Get PDF
    Biliary brush cytology is the standard method of sampling a biliary stricture but has a low sensitivity for the detection of malignancy. We have previously shown that minichromosome maintenance (MCM) replication proteins (Mcm2–7) are markers of dysplasia and have utilised these novel biomarkers of growth for the diagnosis of cervical and bladder cancer. We aimed to determine if MCM proteins are dysregulated in malignant pancreaticobiliary disease and if levels in bile are a sensitive marker of malignancy. In 30 tissue specimens from patients with malignant/benign biliary strictures, we studied Mcm2 and -5 expression by immunohistochemistry. Bile samples were also collected prospectively at endoscopic retrograde cholangiopancreatography from 102 consecutive patients with biliary strictures of established (n=42) or indeterminate aetiology (n=60). Patients with indeterminate strictures also underwent brush cytology as part of standard practice. Bile sediment Mcm5 levels were analysed using an automated immunofluorometric assay. In benign biliary strictures, Mcm2 and -5 protein expression was confined to the basal epithelial proliferative compartment – in contrast to malignant strictures where expression was seen in all tissue layers. The percentage of nuclei positive for Mcm2 was higher in malignant tissue (median 76.5%, range 42–92%) than in benign tissue (median 5%, range 0–33%) (P<0.0005), with similar results for Mcm5. Minichromosome maintenance protein 5 levels in bile were significantly more sensitive than brush cytology (66 vs 20%; P=0.004) for the detection of malignancy in patients with an indeterminate stricture, with a comparable positive predictive value (97 vs 100%; P=ns). In this study, we demonstrate that Mcm5 in bile detected by a simple automated test is a more sensitive indicator of pancreaticobiliary malignancy than routine brush cytology

    Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype

    No full text
    Sickle cell disease (SCD) is caused by a single amino acid change in the adult hemoglobin (Hb) β chain that causes Hb polymerization and red blood cell (RBC) sickling. The co-inheritance of mutations causing fetal γ-globin production in adult life hereditary persistence of fetal Hb (HPFH) reduces the clinical severity of SCD. HPFH mutations in the HBG γ-globin promoters disrupt binding sites for the repressors BCL11A and LRF. We used CRISPR-Cas9 to mimic HPFH mutations in the HBG promoters by generating insertions and deletions, leading to disruption of known and putative repressor binding sites. Editing of the LRF-binding site in patient-derived hematopoietic stem/progenitor cells (HSPCs) resulted in γ-globin derepression and correction of the sickling phenotype. Xenotransplantation of HSPCs treated with gRNAs targeting the LRF-binding site showed a high editing efficiency in repopulating HSPCs. This study identifies the LRF-binding site as a potent target for genome-editing treatment of SCD
    corecore