293 research outputs found

    The Quality of Life of Families of Children with Cerebral Palsy

    Get PDF
    Cerebral palsy, the most common cause of physical childhood disability, is a non-progressive disorder that results from an anoxic brain injury to the fetal or newborn brain. Because this disorder can cause disability, ranging from mild to severe effects on motor and cognitive functioning, the diagnosis can vary from one child to another, causing family stress due to vague and unknown predicted outcomes of the disorder. Because the diagnosis of cerebral palsy affects families in different ways depending on coping mechanisms, support systems, and the age and level of functioning of the child, among other factors, it is important to take an individualistic approach to care. Family-centered care has been shown to be beneficial in approaching the care needs of these families. To promote overall quality of life, efforts should be made to evaluate specific family member needs and include the entire family in the education, care planning, and implementation processes

    Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au

    No full text
    Application of the generalized gradient corrected functional within standard density-functional theory results in a dramatic failure for Au, leading to divergent thermodynamic properties well below the melting point. By combining the upsampled thermodynamic integration using Langevin dynamics technique with the random phase approximation, we show that inclusion of nonlocal many-body effects leads to a stabilization and to an excellent agreement with experiment. © Published by the American Physical Society

    Interwire coupling for In(4x1) /Si(111) probed by surface transport

    Get PDF
    The In/Si(111) system reveals an anisotropy in the electrical conductivity and is a prototype system for atomic wires on surfaces. We use this system to study and tune the interwire interaction by adsorption of oxygen. Through rotational square four-tip transport measurements, both the parallel (σ||) and perpendicular (σ⊥) components are measured separately. The analysis of the I(V) curves reveals that σ⊥ is also affected by adsorption of oxygen, showing clearly an effective interwire coupling, in agreement with density-functional-theory-based calculations of the transmittance. In addition to these surface-state mediated transport channels, we confirm the existence of conducting parasitic space-charge layer channels and address the importance of substrate steps by performing the transport measurements of In phases grown on Si(111) mesa structures.DFG/FOR/170

    Minimal Model for Sand Dunes

    Full text link
    We propose a minimal model for aeolian sand dunes. It combines an analytical description of the turbulent wind velocity field above the dune with a continuum saltation model that allows for saturation transients in the sand flux. The model provides a qualitative understanding of important features of real dunes, such as their longitudinal shape and aspect ratio, the formation of a slip face, the breaking of scale invariance, and the existence of a minimum dune size.Comment: 4 pages, 4 figures, replaced with publishd versio

    Corridors of barchan dunes: stability and size selection

    Get PDF
    Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two instabilities take place. First, barchans receive a sand flux at their back proportional to their width while the sand escapes only from their horns. Large dunes proportionally capture more than they loose sand, while the situation is reversed for small ones: therefore, solitary dunes cannot remain in a steady state. Second, the propagation speed of dunes decreases with the size of the dune: this leads -- through the collision process -- to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further - yet unknown - mechanisms regulating and selecting the size of dunes.Comment: 13 pages, 13 figures. New version resubmitted to Phys. Rev. E. Pictures of better quality available on reques

    A Continuum Saltation Model for Sand Dunes

    Full text link
    We derive a phenomenological continuum saltation model for aeolian sand transport that can serve as an efficient tool for geomorphological applications. The coupled differential equations for the average density and velocity of sand in the saltation layer reproduce both known equilibrium relations for the sand flux and the time evolution of the sand flux as predicted by microscopic saltation models. The three phenomenological parameters of the model are a reference height for the grain-air interaction, an effective restitution coefficient for the grain-bed interaction, and a multiplication factor characterizing the chain reaction caused by the impacts leading to a typical time or length scale of the saturation transients. We determine the values of these parameters by comparing our model with wind tunnel measurements. Our main interest are out of equilibrium situations where saturation transients are important, for instance at phase boundaries (ground/sand) or under unsteady wind conditions. We point out that saturation transients are indispensable for a proper description of sand flux over structured terrain, by applying the model to the windward side of an isolated dune, thereby resolving recently reported discrepancies between field measurements and theoretical predictions.Comment: 11 pages, 7 figure

    Double-plating of ovine critical sized defects of the tibia: a low morbidity model enabling continuous in vivo monitoring of bone healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies using sheep critical sized defect models to test tissue engineered products report high morbidity and complications rates. This study evaluates a large bone defect model in the sheep tibia, stabilized with two, a novel Carbon fibre Poly-ether-ether-ketone (CF-PEEK) and a locking compression plate (LCP) which could sustain duration for up to 6 month with an acceptable low complication rate.</p> <p>Methods</p> <p>A large bone defect of 3 cm was performed in the mid diaphysis of the right tibia in 33 sheep. The defect was stabilised with the CF - PEEK plate and an LCP. All sheep were supported with slings for 8 weeks after surgery. The study was carried out for 3 months in 6 and for 6 months in 27 animals.</p> <p>Results</p> <p>The surgical procedure could easily be performed in all sheep and continuous in vivo radiographic evaluation of the defect was possible. This long bone critical sized defect model shows with 6.1% a low rate of complications compared with numbers mentioned in the literature.</p> <p>Conclusions</p> <p>This experimental animal model could serve as a standard model in comparative research. A well defined standard model would reduce the number of experimental animals needed in future studies and would therefore add to ethical considerations.</p
    corecore