17 research outputs found

    Possibilities of applying Ti (C, N) coatings on prosthetic elements : research with the use of human endothelial cells

    No full text
    Purpose: The aim of our study was to examine the effect of prosthetic alloys with Ti (C, N) coatings on viability and pro life ration of human cells employing an MTT assay with the use of human microvascular endothelial cells derived from the skin – HMEC-1 (Human Microvascular Endothelial Cells-1). Methods: Cylindrical shape samples made of Ni-Cralloy were divided into S1-S5 groups and coated with Ti (C, N) layers with different content of C and N. S0 group – control group without layer. The alloys (S0-S5) were stored in an experimental medium (MCDB131 with antibiotics) for 30 days and then HMEC-1 cells were incubated in the alloy extract for 24 and 96 hours. Next, cell viability was determined using MTT method. Results: In the case of samples incubated for both 24 and 96 hours there are statistically significant differences (with p-value <0.05) between the uncoated samples (S0 group) and all the other Ti (C, N) coated samples. Higher absorbance values were observed in all coated groups than in the control S0 group, where cell growth was statistically significantly lower. Conclusions: During incubation of endothelial cells with coated samples the number of cells was significantly bigger than the number with uncoated alloys. The best viability of cells was obtained from the S = 3 (with 51.94% at. Ti, 28.22% at. C and 19.84% at. N) group of samples. Ti (C, N) coatings may be applied as protective components on prosthetic elements made of base metal alloys

    Capsid Engineering Overcomes Barriers Toward Adeno-Associated Virus Vector-Mediated Transduction of Endothelial Cells

    Get PDF
    Endothelial cells (EC) are targets in gene therapy and regenerative medicine, but they are inefficiently transduced with adeno-associated virus (AAV) vectors of various serotypes. To identify barriers hampering efficient transduction and to develop an optimized AAV variant for EC transduction, we screened an AAV serotype 2-based peptide display library on primary human macrovascular EC. Using a new high-throughput selection and monitoring protocol, we identified a capsid variant, AAV-V-EC, which outperformed the parental serotype as well as first-generation targeting vectors in EC transduction. AAV vector uptake was improved, resulting in significantly higher transgene expression levels from single-stranded vector genomes detectable within a few hours post-transduction. Notably, AAV-V-EC transduced not only proliferating EC but also quiescent EC, although higher particle-per-cell ratios had to be applied. Also, induced pluripotent stem cell-derived endothelial progenitor cells, a novel tool in regenerative medicine and gene therapy, were highly susceptible toward AAV-V-EC transduction. Thus, overcoming barriers by capsid engineering significantly expands the AAV tool kit for a wide range of applications targeting EC

    Animal-like prostaglandins in marine microalgae

    No full text
    Diatoms are among the most successful primary producers in ocean and freshwater environments. Deriving from a secondary endosymbiotic event, diatoms have a mixed genome containing bacterial, animal and plant genes encoding for metabolic pathways that may account for their evolutionary success. Studying the transcriptomes of two strains of the diatom Skeletonema marinoi, we report, for the first time in microalgae, an active animal-like prostaglandin pathway that is differentially expressed in the two strains. Prostaglandins are hormone-like mediators in many physiological and pathological processes in mammals, playing a pivotal role in inflammatory responses. They are also present in macroalgae and invertebrates, where they act as defense and communication mediators. The occurrence of animal-like prostaglandins in unicellular photosynthetic eukaryotes opens up new intriguing perspectives on the evolution and role of these molecules in the marine environment as possible mediators in cell-to-cell signaling, eventually influencing population dynamics in the plankton
    corecore