52 research outputs found

    Benchmarks and implementation of the ALICE high level trigger

    Get PDF
    The ALICE high level trigger combines and processes the full information from all major detectors in a large computer cluster. Data rate reduction is achieved by reducing the event rate by selecting interesting events (software trigger) and by reducing the event size by selecting sub-events and by advanced data compression. Reconstruction chains for the barrel detectors and the forward muon spectrometer have been benchmarked. The HLT receives a replica of the raw data via the standard ALICE DDL link into a custom PCI receiver card (HLT-RORC). These boards also provide a FPGA co-processor for data-intensive tasks of pattern recognition. Some of the pattern recognition algorithms (cluster finder, Hough transformation) have been re-designed in VHDL to be executed in the Virtex-4 FPGA on the HLT-RORC. HLT prototypes were operated during the beam tests of the TPC and TRD detectors. The input and output interfaces to DAQ and the data flow inside of HLT were successfully tested. A full-scale prototype of the dimuon-HLT achieved the expected data flow performance. This system was finally embedded in a GRID-like system of several distributed clusters demonstrating the scalability and fault-tolerance of the HL

    Schmerztherapie, postoperative

    No full text

    Postoperative Schmerztherapie nach ambulanten Operationen. Eine Befragung der behandelnden Anästhesisten

    No full text
    Data on practice and quality of postoperative pain treatment by anaesthesiologists after ambulatory surgery are sparse. The current survey enrolled anaesthesiologists in private practice who were responsible for pain therapy after ambulatory surgery. The aim of this investigation was to evaluate the implementation of the German S3 guidelines for acute and postoperative pain therapy in the outpatient setting

    Moderne Schmerztherapie

    No full text

    Fault-tolerant distributed mass storage for LHC computing

    No full text
    In this paper we present the concept and first prototyping results of a modular fault-tolerant distributed mass storage architecture for large Linux PC clusters as they are deployed by the upcoming particle physics experiments. The device masquerading technique using an Enhanced Network Block Device (ENBD) enables local RAID over remote disks as the key concept of the ClusterRAID system. The block level interface to remote files, partitions or disks provided by the ENBD makes it possible to use the standard Linux software RAID to add fault-tolerance to the system. Preliminary performance measurements indicate that the latency is comparable to a local hard drive. With four disks throughput rates of up to 55MB/s were achieved with first prototypes for a RAIDO setup, and about 40M/s for a RAID5 setup. (29 refs)
    corecore