9 research outputs found

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA)

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10^{-8}; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10^{−10}; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA)

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    \ua9 2021, The Author(s).Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 7 10−8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 7 10−10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA)

    Sensitivity analysis and parameter optimization for the fractionative catalytic conversion of lignocellulosic biomass in the polyoxometalate–ionosolv concept

    No full text
    The recently developed polyoxometalate (POM)–ionosolv concept offers an interesting strategy to generate two valuable product streams from lignocellulosic biomass, a solid cellulose-rich pulp and short-chain carboxylic acids like formic acid and acetic acid in a simple and cost-efficient manner. This study aimed to find optimum parameters for the two steps of the transformation by performing a sensitivity analysis on the initial ionosolv fractionation step as well as kinetic investigations of the following POM-catalyzed oxidation step. The results were transferred to the POM–ionosolv concept to find the overall process optimum. Beech wood was used as an industrially relevant substrate for ionosolv fractionation with the low-cost ionic liquid triethylammonium sulfate, [TEA][HSO4], and the HPA-5 [H8PV5Mo7O40] POM catalyst for the oxidation of the dissolved components in an oxygen atmosphere. As the most seminal finding, we defined optimum conditions of 125 °C, 1200 rpm, 30 bar oxygen, and 24 h reaction time in ionic liquid containing 70% water, achieving 72% xylose extraction from beech wood, which resulted in a 39% formic acid yield. We suggest that the fractionation and catalytic conversion are carried out at different water contents for maximum conversion efficiency for each step

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 x 10(-8); KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 x 10(-10); HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA). Genome wide association studies in cancer are used to understand the heritable genetic contribution to disease risk. Here, the authors perform a genome wide association study in European patients with acute myeloid leukemia and identify loci associated with risk of developing the disease.Peer reviewe
    corecore