10 research outputs found

    Earthshine observation of vegetation and implication for life detection on other planets - A review of 2001 - 2006 works

    Full text link
    The detection of exolife is one of the goals of very ambitious future space missions that aim to take direct images of Earth-like planets. While associations of simple molecules present in the planet's atmosphere (O2O_2, O3O_3, CO2CO_2 etc.) have been identified as possible global biomarkers, we review here the detectability of a signature of life from the planet's surface, i.e. the green vegetation. The vegetation reflectance has indeed a specific spectrum, with a sharp edge around 700 nm, known as the "Vegetation Red Edge" (VRE). Moreover vegetation covers a large surface of emerged lands, from tropical evergreen forest to shrub tundra. Thus considering it as a potential global biomarker is relevant. Earthshine allows to observe the Earth as a distant planet, i.e. without spatial resolution. Since 2001, Earthshine observations have been used by several authors to test and quantify the detectability of the VRE in the Earth spectrum. The egetation spectral signature is detected as a small 'positive shift' of a few percents above the continuum, starting at 700 nm. This signature appears in most spectra, and its strength is correlated with the Earth's phase (visible land versus visible ocean). The observations show that detecting the VRE on Earth requires a photometric relative accuracy of 1% or better. Detecting something equivalent on an Earth-like planet will therefore remain challenging, moreover considering the possibility of mineral artifacts and the question of 'red edge' universality in the Universe.Comment: Invited talk in "Strategies for Life Detection" (ISSI Bern, 24-28 April 2006) to appear in a hardcopy volume of the ISSI Space Science Series, Eds, J. Bada et al., and also in an issue of Space Science Reviews. 13 pages, 8 figures, 1 tabl

    Precursor Nuclearity and Ligand Effects in Atomically‐Dispersed Heterogeneous Iron Catalysts for Alkyne Semi‐Hydrogenation

    No full text
    Nanostructuring earth-abundant metals as single atoms or clusters of controlled size on suitable carriers opens new routes to develop high-performing heterogeneous catalysts, but resolving speciation trends remains challenging. Here, we investigate the potential of low-nuclearity iron catalysts in the continuous liquid-phase semi-hydrogenation of various alkynes. The activity depends on multiple factors, including the nuclearity and ligand sphere of the metal precursor and their evolution upon interaction with the mesoporous graphitic carbon nitride scaffold. Density functional theory predicts the favorable adsorption of the metal precursors on the scaffold without altering the nuclearity and preserving some ligands. Contrary to previous observations for palladium catalysts, single atoms of iron exhibit higher activity than larger clusters. Atomistic simulations suggest a central role of residual carbonyl species in permitting low-energy paths over these isolated metal centers.ISSN:1867-3880ISSN:1867-389
    corecore