1,906 research outputs found

    Interface steps in field effect devices

    Full text link
    The charge doped into a semiconductor in a field effect transistor (FET) is generally confined to the interface of the semiconductor. A planar step at the interface causes a potential drop due to the strong electric field of the FET, which in turn is screened by the doped carriers. We analyze the dipolar electronic structure of a single step in the Thomas-Fermi approximation and find that the transmission coefficient through the step is exponentially suppressed by the electric field and the induced carrier density as well as by the step height. In addition, the field enhancement at the step edge can facilitate the electric breakthrough of the insulating layer. We suggest that these two effects may lead to severe problems when engineering FET devices with very high doping. On the other hand steps can give rise to interesting physics in superconducting FETs by forming weak links and potentially creating atomic size Josephson junctions.Comment: 6 pages, 4 figures, submitted to J. Appl. Phy

    Jahn-Teller effect versus Hund's rule coupling in C60N-

    Full text link
    We propose variational states for the ground state and the low-energy collective rotator excitations in negatively charged C60N- ions (N=1...5). The approach includes the linear electron-phonon coupling and the Coulomb interaction on the same level. The electron-phonon coupling is treated within the effective mode approximation (EMA) which yields the linear t_{1u} x H_g Jahn-Teller problem whereas the Coulomb interaction gives rise to Hund's rule coupling for N=2,3,4. The Hamiltonian has accidental SO(3) symmetry which allows an elegant formulation in terms of angular momenta. Trial states are constructed from coherent states and using projection operators onto angular momentum subspaces which results in good variational states for the complete parameter range. The evaluation of the corresponding energies is to a large extent analytical. We use the approach for a detailed analysis of the competition between Jahn-Teller effect and Hund's rule coupling, which determines the spin state for N=2,3,4. We calculate the low-spin/high-spin gap for N=2,3,4 as a function of the Hund's rule coupling constant J. We find that the experimentally measured gaps suggest a coupling constant in the range J=60-80meV. Using a finite value for J, we recalculate the ground state energies of the C60N- ions and find that the Jahn-Teller energy gain is partly counterbalanced by the Hund's rule coupling. In particular, the ground state energies for N=2,3,4 are almost equal

    When it Pays to Rush: Interpreting Morphogen Gradients Prior to Steady-State

    Full text link
    During development, morphogen gradients precisely determine the position of gene expression boundaries despite the inevitable presence of fluctuations. Recent experiments suggest that some morphogen gradients may be interpreted prior to reaching steady-state. Theoretical work has predicted that such systems will be more robust to embryo-to-embryo fluctuations. By analysing two experimentally motivated models of morphogen gradient formation, we investigate the positional precision of gene expression boundaries determined by pre-steady-state morphogen gradients in the presence of embryo-to-embryo fluctuations, internal biochemical noise and variations in the timing of morphogen measurement. Morphogens that are direct transcription factors are found to be particularly sensitive to internal noise when interpreted prior to steady-state, disadvantaging early measurement, even in the presence of large embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors can be measured prior to steady-state without significant decrease in positional precision provided fluctuations in the timing of measurement are small. Applying our results to experiment, we predict that Bicoid, a transcription factor morphogen in Drosophila, is unlikely to be interpreted prior to reaching steady-state. We also predict that Activin in Xenopus and Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be decoded in pre-steady-state.Comment: 18 pages, 3 figure

    Hydropower production and river rehabilitation: A case study on an alpine river

    Get PDF
    Despite the numerous benefits of hydropower production, this renewable energy source can have serious negative consequences on the environment. For example, dams act as barriers for the longitudinal migration of organisms and transport of particulate matter. Accelerated siltation processes in the receiving river reduce the vertical connectivity between river and groundwater. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat and organisms, especially during winter months when natural discharge is low and almost constant. In this study, we report the current deficits present in the River Rhone from two different scientific perspectives - fish ecology and hydrology. Potential rehabilitation solutions in synergy with flood protection measures are discussed. We focus on the effects of hydropeaking in relation to longitudinal and vertical dimensions and discuss local river widening as a potential rehabilitation tool. The fish fauna in the Rhone is characterized by a highly unnatural structure (low diversity, impaired age distribution). A high correlation between fish biomass and monotonous morphology (poor cover availability) was established. Tracer hydrology provided further details about the reduced permeability of the riverbank, revealing a high degree of siltation with K values of about 4.7 × 10−6m s−1. Improving the hydrologic situation is therefore essential for the successful rehabilitation of the Rhone River. To this end, hydropeaks in the river reaches must be attenuated. This can be realized by a combination of different hard technical and soft operational measures such as retention reservoirs or slower up and down ramping of turbine

    Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests

    Get PDF
    Simulation models such as forest patch models can be used to forecast the development of forest structural attributes over time. However, predictions of such models with respect to the impact of forest dynamics on the long-term protective effect of mountain forests may be of limited accuracy where tree regeneration is simulated with little detail. For this reason, we improved the establishment submodel of the ForClim forest patch model by implementing a more detailed representation of tree regeneration. Our refined submodel included canopy shading and ungulate browsing, two important constraints to sapling growth in mountain forests. To compare the old and the new establishment submodel of ForClim, we simulated the successional dynamics of the Stotzigwald protection forest in the Swiss Alps over a 60-year period. This forest provides protection for an important traffic route, but currently contains an alarmingly low density of tree regeneration. The comparison yielded a significantly longer regeneration period for the new model version, bringing the simulations into closer agreement with the known slow stand dynamics of mountain forests. In addition, the new model version was applied to forecast the future ability of the Stotzigwald forest to buffer the valley below from rockfall disturbance. Two scenarios were simulated: (1) canopy shading but no browsing impact, and (2) canopy shading and high browsing impact. The simulated stand structures were then compared to stand structure targets for rockfall protection, in order to assess their long-term protective effects. Under both scenarios, the initial sparse level of tree regeneration affected the long-term protective effect of the forest, which considerably declined during the first 40years. In the complete absence of browsing, the density of small trees increased slightly after 60years, raising hope for an eventual recovery of the protective effect. In the scenario that included browsing, however, the density of small trees remained at very low levels. With our improved establishment submodel, we provide an enhanced tool for studying the impacts of structural dynamics on the long-term protective effect of mountain forests. For certain purposes, it is important that predictive models of forest dynamics adequately represent critical processes for tree regeneration, such as sapling responses to low light levels and high browsing pressur

    Zystoskopie bei einem Rind mit Urachus persistens-Ruptur

    Full text link
    Die Arbeit beschreibt die klinischen, sonographischen und zystoskopischen Befunde sowie die Therapie bei einem 2-jĂ€hrigen, 7 Monate trĂ€chtigen Braunviehrind mit Ruptur des Urachus persistens. Das Leitsymptom war ein birnförmiges Abdomen bei stark gestörtem Allgemeinbefinden. Die Blutuntersuchung ergab eine hochgradige AzotĂ€mie. Bei der Ultraschalluntersuchung wurde ein Aszites festgestellt, welcher aufgrund der massiv erhöhten Kreatininkonzentration im Punktat als Uroperitoneum klassiert wurde. Bei der Zystoskopie konnte das Endoskop ĂŒber die Harnblase in einen persistierenden Urachus eingefĂŒhrt werden. Aufgrund sĂ€mtlicher Befunde wurde die Diagnose Uroperitoneum infolge Ruptur eines Urachus persistens gestellt. Als Therapie wurde eine Laparotomie in der linken Flanke mit doppelter Ligation des Urachus durchgefĂŒhrt. Innerhalb von wenigen Tagen normalisierte sich der Zustand des Rindes. Es hat inzwischen normal gekalbt und erfreut sich bester Gesundheit This case report describes the clinical, ultrasonographic and cystoscopic findings and treatment in a two-year-old Swiss Braunvieh heifer with rupture of a patent urachus. The lead signs in the seven-month-pregnant heifer were markedly abnormal general condition and demeanour and a pear-shaped abdomen. The heifer had severe azotaemia, and abdominal ultrasonography revealed ascites, which was diagnosed as uroperitoneum based on an elevated creatinine level in the fluid. A patent urachus was identified during cystoscopy; the endoscope could be advanced beyond the apex of the urinary bladder into the urachus. Based on all the findings, a diagnosis of uroperitoneum attributable to rupture of a patent urachus was made. The urachus was ligated twice via a left-flank laparotomy. The general condition normalised within a few days of surgery, and the patient calved normally and was in good health at follow-up evaluation

    Three-Dimensional Dirac Electrons at the Fermi Energy in Cubic Inverse Perovskites: Ca_3PbO and its Family

    Full text link
    The band structure of cubic inverse perovskites, Ca_3PbO and its family, are investigated with the first-principles method. A close observation of the band structure reveals that six equivalent Dirac electrons with a very small mass exist on the line connecting the Gamma- and X-points, and at the symmetrically equivalent points in the Brillouin zone. The discovered Dirac electrons are three-dimensional and remarkably located exactly at the Fermi energy. A tight-binding model describing the low-energy band structure is also constructed and used to discuss the origin of the Dirac electrons in this material. Materials related to Ca_3PbO are also studied, and some design principles for the Dirac electrons in this series of materials are proposed.Comment: 4.2 pages, refined versio

    Organic matter governs N and P balance in Danube Delta lakes

    Get PDF
    The transformation of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorous (SRP), and the release of dissolved organic and particulate N and P, were analyzed in two lake complexes (Uzlina-Isac and Puiu-Rosu-Rosulet) of the Danube Delta wetland during flood conditions in May and at low water level in September 2006. The Uzlina-Isac complex was hydrologically tightly-connected with the Danube River and was flushed with river-borne nutrients and organic matter. These lakes acted as effective transformers for nutrients and produced large amounts of fresh biomass, that promoted the excretion of dissolved organic N and P during active growth. Biomass breakdown created particulate matter (<0.45ÎŒm), which was widely liberated during low flow in the fall. The Puiu-Rosu-Rosulet complex was characterized by a more distant position to the Danube and proximity to the Black Sea, and received dominantly transformed organic compounds from the flow-through water and vast vegetation cover. Due to reduced nutrient input, the internal production of organic biomass also was reduced in these more remote lakes. Total N and P export from the lake nearest to the shelf was governed by dominantly dissolved organic and particulate compounds (mean 58 and 82%, respectively). Overall, this survey found that these highly productive wetlands efficiently transform nutrients into a large pool of dissolved organic and particulate N and P. Hence, wetland lakes may behave widely as net sources of organic N and P to downstream waters and coastal marine system

    Thermally induced gluten modification observed with rheology and spectroscopies

    Get PDF
    The protein vital gluten is mainly used for food while interest for non-food applications, like biodegradable materials, increases. In general, the structure and functionality of proteins is highly dependent on thermal treatments during production or modification. This study presents conformational changes and corresponding rheological effects of vital wheat gluten depending on temperature. Dry samples analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermalgravimetric analysis coupled with mass spectrometry (TGA-MS) show surface compositions and conformational changes from 25 to 250 °C. Above 170 °C, XPS reveals a decreased N content at the surface while FTIR band characteristics for ÎČ-sheets prove structural changes. At 250 °C, protein denaturation accompanied by a significant mass loss due to dehydration and decarbonylation reactions is observed. Oscillatory measurements of optimally hydrated vital gluten describing network properties of the material show two structural changes along a temperature ramp from 25 to 90 °C: at 56–64 °C, the temperature necessary to trigger structural changes increases with the ratio of gliadin to total protein mass, determined by reversed-phase high performance liquid chromatography (RP-HPLC). At a temperature of 79–81 °C, complete protein denaturation occurs. FTIR confirms the denaturation process by showing band shifts with both temperature steps
    • 

    corecore