19,299 research outputs found

    Multicanonical Recursions

    Get PDF
    The problem of calculating multicanonical parameters recursively is discussed. I describe in detail a computational implementation which has worked reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded Z-compressed .tar file created by uufiles), figure file corrected

    Kinematics of the swimming of Spiroplasma

    Full text link
    \emph{Spiroplasma} swimming is studied with a simple model based on resistive-force theory. Specifically, we consider a bacterium shaped in the form of a helix that propagates traveling-wave distortions which flip the handedness of the helical cell body. We treat cell length, pitch angle, kink velocity, and distance between kinks as parameters and calculate the swimming velocity that arises due to the distortions. We find that, for a fixed pitch angle, scaling collapses the swimming velocity (and the swimming efficiency) to a universal curve that depends only on the ratio of the distance between kinks to the cell length. Simultaneously optimizing the swimming efficiency with respect to inter-kink length and pitch angle, we find that the optimal pitch angle is 35.5∘^\circ and the optimal inter-kink length ratio is 0.338, values in good agreement with experimental observations.Comment: 4 pages, 5 figure

    Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states

    Full text link
    We discuss an alternative to relative entropy as a measure of distance between mixed quantum states. The proposed quantity is an extension to the realm of quantum theory of the Jensen-Shannon divergence (JSD) between probability distributions. The JSD has several interesting properties. It arises in information theory and, unlike the Kullback-Leibler divergence, it is symmetric, always well defined and bounded. We show that the quantum JSD (QJSD) shares with the relative entropy most of the physically relevant properties, in particular those required for a "good" quantum distinguishability measure. We relate it to other known quantum distances and we suggest possible applications in the field of the quantum information theory.Comment: 14 pages, corrected equation 1

    Application of Multicanonical Multigrid Monte Carlo Method to the Two-Dimensional Ï•4\phi^4-Model: Autocorrelations and Interface Tension

    Get PDF
    We discuss the recently proposed multicanonical multigrid Monte Carlo method and apply it to the scalar Ï•4\phi^4-model on a square lattice. To investigate the performance of the new algorithm at the field-driven first-order phase transitions between the two ordered phases we carefully analyze the autocorrelations of the Monte Carlo process. Compared with standard multicanonical simulations a real-time improvement of about one order of magnitude is established. The interface tension between the two ordered phases is extracted from high-statistics histograms of the magnetization applying histogram reweighting techniques.Comment: 49 pp. Latex incl. 14 figures (Fig.7 not included, sorry) as uuencoded compressed tar fil

    Direct frequency comb spectroscopy of trapped ions

    Full text link
    Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.Comment: 4 pages, 5 figur

    Commuting Heisenberg operators as the quantum response problem: Time-normal averages in the truncated Wigner representation

    Get PDF
    The applicability of the so-called truncated Wigner approximation (-W) is extended to multitime averages of Heisenberg field operators. This task splits naturally in two. Firstly, what class of multitime averages the -W approximates, and, secondly, how to proceed if the average in question does not belong to this class. To answer the first question we develop an (in principle, exact) path-integral approach in phase-space based on the symmetric (Weyl) ordering of creation and annihilation operators. These techniques calculate a new class of averages which we call time-symmetric. The -W equations emerge as an approximation within this path-integral techniques. We then show that the answer to the second question is associated with response properties of the system. In fact, for two-time averages Kubo's renowned formula relating the linear response function to two-time commutators suffices. The -W is trivially generalised to the response properties of the system allowing one to calculate approximate time-normally ordered two-time correlation functions with surprising ease. The techniques we develop are demonstrated for the Bose-Hubbard model.Comment: 20 pages, 6 figure

    Frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in the calcium ion for a comparison with quasar data

    Get PDF
    High accuracy frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in calcium ions is performed using laser cooled and crystallized ions in a linear Paul trap. Calibration is performed with a frequency comb laser, resulting in a transition frequency of f=755222766.2(1.7) MHz. The accuracy presents an improvement of more than one order of magnitude, and will facilitate a comparison with quasar data in a search for a possible change of the fine structure constant on a cosmological time scale.Comment: Corrected typos (including one on the axis of figure 6

    An efficient, multiple range random walk algorithm to calculate the density of states

    Full text link
    We present a new Monte Carlo algorithm that produces results of high accuracy with reduced simulational effort. Independent random walks are performed (concurrently or serially) in different, restricted ranges of energy, and the resultant density of states is modified continuously to produce locally flat histograms. This method permits us to directly access the free energy and entropy, is independent of temperature, and is efficient for the study of both 1st order and 2nd order phase transitions. It should also be useful for the study of complex systems with a rough energy landscape.Comment: 4 pages including 4 ps fig

    Multicanonical Hybrid Monte Carlo: Boosting Simulations of Compact QED

    Full text link
    We demonstrate that substantial progress can be achieved in the study of the phase structure of 4-dimensional compact QED by a joint use of hybrid Monte Carlo and multicanonical algorithms, through an efficient parallel implementation. This is borne out by the observation of considerable speedup of tunnelling between the metastable states, close to the phase transition, on the Wilson line. We estimate that the creation of adequate samples (with order 100 flip-flops) becomes a matter of half a year's runtime at 2 Gflops sustained performance for lattices of size up to 24^4.Comment: 15 pages, 8 figure

    Transition matrix Monte Carlo method for quantum systems

    Full text link
    We propose an efficient method for Monte Carlo simulation of quantum lattice models. Unlike most other quantum Monte Carlo methods, a single run of the proposed method yields the free energy and the entropy with high precision for the whole range of temperature. The method is based on several recent findings in Monte Carlo techniques, such as the loop algorithm and the transition matrix Monte Carlo method. In particular, we derive an exact relation between the DOS and the expectation value of the transition probability for quantum systems, which turns out to be useful in reducing the statistical errors in various estimates.Comment: 6 pages, 4 figure
    • …
    corecore