28 research outputs found

    Experimental Study of Pressure Influence on Tunnel Transport into 2DEG

    Full text link
    We present the concept and the results of pilot measurements of tunneling in a system {Al/δSi\delta_{Si}-GaAs} under pressure up to 2 GPa at 4.2 K. The obtained results may indicate the following: the barrier height for {Al/δ\delta-GaAs} equals to 0.86 eV at P=0 and its pressure coefficient is 3meV/kbar3 meV/kbar; charged impurity density in the delta-layer starts to drop from 4.5×1012cm24.5\times 10^{12} cm^{-2} down to 3.8×1012cm23.8\times 10^{12} cm^{-2} at about 1.5 GPa; metal-insulator transition may occur in 2DEG at about 2 GPa

    Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thermotolerant methylotrophic yeast <it>Hansenula polymorpha </it>is capable of alcoholic fermentation of xylose at elevated temperatures (45 – 48°C). Such property of this yeast defines it as a good candidate for the development of an efficient process for simultaneous saccharification and fermentation. However, to be economically viable, the main characteristics of xylose fermentation of <it>H. polymorpha </it>have to be improved.</p> <p>Results</p> <p>Site-specific mutagenesis of <it>H. polymorpha XYL1 </it>gene encoding xylose reductase was carried out to decrease affinity of this enzyme toward NADPH. The modified version of <it>XYL1 </it>gene under control of the strong constitutive <it>HpGAP </it>promoter was overexpressed on a <it>Δxyl1 </it>background. This resulted in significant increase in the K<sub>M </sub>for NADPH in the mutated xylose reductase (K341 → R N343 → D), while K<sub>M </sub>for NADH remained nearly unchanged. The recombinant <it>H. polymorpha </it>strain overexpressing the mutated enzyme together with native xylitol dehydrogenase and xylulokinase on <it>Δxyl1 </it>background was constructed. Xylose consumption, ethanol and xylitol production by the constructed strain were determined for high-temperature xylose fermentation at 48°C. A significant increase in ethanol productivity (up to 7.3 times) was shown in this recombinant strain as compared with the wild type strain. Moreover, the xylitol production by the recombinant strain was reduced considerably to 0.9 mg × (L × h)<sup>-1 </sup>as compared to 4.2 mg × (L × h)<sup>-1 </sup>for the wild type strain.</p> <p>Conclusion</p> <p>Recombinant strains of <it>H. polymorpha </it>engineered for improved xylose utilization are described in the present work. These strains show a significant increase in ethanol productivity with simultaneous reduction in the production of xylitol during high-temperature xylose fermentation.</p

    Dual tagging as an approach to isolate endogenous chromatin remodeling complexes from Saccharomyces cerevisiae.

    No full text
    Affinity isolation has been an essential technique for molecular studies of cellular assemblies, such as the switch/sucrose non-fermentable (SWI/SNF) family of ATP-dependent chromatin remodeling complexes. However, even biochemically pure isolates can contain heterogeneous mixtures of complexes and their components. In particular, purification strategies that rely on affinity tags fused to only one component of a complex may be susceptible to this phenomenon. This study demonstrates that fusing purification tags to two different proteins enables the isolation of intact complexes of remodels the structure of chromatin (RSC). A Protein A tag was fused to one of the RSC proteins and a Twin-Strep tag to another protein of the complex. By mass spectrometry, we demonstrate the enrichment of the RSC complexes. The complexes had an apparent Svedberg value of about 20S, as shown by glycerol gradient ultracentrifugation. Additionally, purified complexes were demonstrated to be functional. Electron microscopy and single-particle analyses revealed a conformational rearrangement of RSC upon interaction with acetylated histone H3 peptides. This purification method is useful to purify functionally active, structurally well-defined macromolecular assemblies
    corecore