381 research outputs found

    A comparison of age-standardised event rates for acute and chronic coronary heart disease in metropolitan and regional/remote Victoria: a retrospective cohort study

    Get PDF
    Abstract Background Acute and chronic coronary heart disease (CHD) pose different burdens on health-care services and require different prevention and treatment strategies. Trends in acute and chronic CHD event rates can guide service implementation. This study evaluated changes in acute and chronic CHD event rates in metropolitan and regional/remote Victoria. Methods Victorian hospital admitted episodes with a principal diagnosis of acute CHD or chronic CHD were identified from 2005 to 2012. Acute and chronic CHD age-standardised event rates were calculated in metropolitan and regional/remote Victoria. Poisson log-link linear regression was used to estimate annual change in acute and chronic CHD event rates. Results Acute CHD age-standardised event rates decreased annually by 2.9 % (95 % CI, −4.3 to −1.4 %) in metropolitan Victoria and 1.7 % (95 % CI, −3.2 to −0.1 %) in regional/remote Victoria. In comparison, chronic CHD age-standardised event rates increased annually by 4.8 % (95 % CI, +3.0 to +6.5 %) in metropolitan Victoria and 3.1 % (95 % CI, +1.3 to +4.9 %) in regional/remote Victoria. On average, age-standardised event rates for regional/remote Victoria were 30.3 % (95 % CI, 23.5 to 37.2 %) higher for acute CHD and 55.3 % (95 % CI, 47.1 to 63.5 %) higher for chronic CHD compared to metropolitan Victoria from 2005 to 2012. Conclusion Annual decreases in acute CHD age-standardised event rates might reflect improvements in primary prevention, while annual increases in chronic CHD age-standardised event rates suggest a need to improve secondary prevention strategies. Consistently higher acute and chronic CHD age-standardised event rates were evident in regional/remote Victoria compared to metropolitan Victoria from 2005 to 2012

    Preference of Students on the Format of Options in a Multiple-Choice Test

    Get PDF
    Schools in the Philippines, especially those that are offering teacher education programs, are advised to construct examinations that are Licensure Examination for Teachers (LET)-like test items. This is because “if any aspect of a test is unfamiliar to candidates, they are likely to perform less well than they would do otherwise on subsequently taking a parallel version, for example.” Using the education students of Leyte Normal University, Southern Leyte State University-Tomas Oppus Campus, and Visayas State University, this study determined the students’ preference on the arrangements/format of options in a multiple-choice test through a survey questionnaire. Moreover, it tried to find out the reasons behind the preferences. Mean, frequency and Chi-square tests were used in the analysis of data. Results revealed that the cascading arrangement is the most preferred arrangement of options and the one-line horizontal arrangement is the least preferred arrangement of options in a multiple-choice test. The reasons identified were organized and easy to read, less confusing and easier to distinguish and vertically arranged thus require less eye movement. Moreover, the reasons for the lower case preference were it is usual and commonly used in a multiple-choice test, clear and gives less eye and mental pressure and easier to read and write.And lastly, the relationship between the students’ preference of the arrangement of options in a multiplechoice test and the letter case options were tested using the Chi-square test. Hence, it is argued that in constructing a multiple-choice test, one has to consider using the cascading arrangement

    Format of Options in a Multiple Choice Test Vis-a-Vis Test Performance

    Get PDF
    Testing or evaluation in an educational context is primarily used to measure or evaluate and authenticate the academic readiness, learning advancement, acquisition of skills, or instructional needs of learners. This study tried to determine whether the varied combinations of arrangements of options and letter cases in a Multiple-Choice Test (MCT) affect the test performance of the homogenous BEED students. A test was designed and administered to test the performance across test items employing different arrangement of options (Cascading, Inverted N, Z eye movement, and One-line Horizontal) and across case of letter options (upper and lower case), that is, a total of eight (8) treatments. The statistical analyses revealed that there is an insignificant difference in the mean performance of students in relation to letter cases and arrangement of letter choices in a multiple choice test. Thus, the test performance of students in a multiple choice type of test does not depend on either letter cases or arrangement of letter choices

    Satellite and ground-based measurements of XCO2 in a remote semiarid region of Australia

    Get PDF
    In this study, we present ground-based measurements of column-averaged dry-air mole fractions (DMFs) of CO2 (or XCO2) taken in a semiarid region of Australia with an EM27/SUN portable spectrometer equipped with an automated clamshell cover. We compared these measurements to space-based XCO2 retrievals from the Greenhouse Gases Observing Satellite (GOSAT). Side-by-side measurements of EM27/SUN with the Total Carbon Column Observing Network (TCCON) instrument at the University of Wollongong were conducted in 2015-2016 to derive an XCO2 scaling factor of 0.9954 relative to TCCON. Although we found a slight drift of 0.13 % over 3 months in the calibration curve of the EM27/SUN vs. TCCON XCO2, the alignment of the EM27/SUN proved stable enough for a 2-week campaign, keeping the retrieved Xair values, another measure of stability, to within 0.5 % and the modulation efficiency to within 2 %. From the measurements in Alice Springs, we confirm a small bias of around 2 ppm in the GOSAT M-gain to H-gain XCO2 retrievals, as reported by the NIES GOSAT validation team. Based on the reported random errors from GOSAT, we estimate the required duration of a future campaign in order to better understand the estimated bias between the EM27/SUN and GOSAT. The dataset from the Alice Springs measurements is accessible at https://doi.org/10.4225/48/5b21f16ce69bc (Velazco et al., 2018)

    Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model

    Get PDF
    The GEOS-Chem simulation of atmospheric CH4_{4} was evaluated against observations from the Thermal and Near Infrared Sensor for Carbon Observations Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and the Total Carbon Column Observing Network (TCCON). We focused on the model simulations at the 4°×5° and 2°×2.5° horizontal resolutions for the period of February–May 2010. Compared to the GOSAT, TCCON, and ACE-FTS data, we found that the 2°×2.5° model produced a better simulation of CH4_{4}, with smaller biases and a higher correlation to the independent data. We found large resolution-dependent differences such as a latitude-dependent XCH4_{4} bias, with higher column abundances of CH4_{4} at high latitudes and lower abundances at low latitudes at the 4°×5° resolution than at 2°×2.5°. We also found large differences in CH4_{4} column abundances between the two resolutions over major source regions such as China. These differences resulted in up to 30 % differences in inferred regional CH4_{4} emission estimates from the two model resolutions. We performed several experiments using 222Rn, 7Be, and CH4_{4} to determine the origins of the resolution-dependent errors. The results suggested that the major source of the latitude-dependent errors is excessive mixing in the upper troposphere and lower stratosphere, including mixing at the edge of the polar vortex, which is pronounced at the 4°×5° resolution. At the coarser resolution, there is weakened vertical transport in the troposphere at midlatitudes to high latitudes due to the loss of sub-grid tracer eddy mass flux in the storm track regions. The vertical air mass fluxes are calculated in the model from the degraded coarse-resolution wind fields and the model does not conserve the air mass flux between model resolutions; as a result, the low resolution does not fully capture the vertical transport. This produces significant localized discrepancies, such as much greater CH4_{4} abundances in the lower troposphere over China at 4°×5° than at 2°×2.5°. Although we found that the CH4_{4} simulation is significantly better at 2°×2.5° than at 4°×5°, biases may still be present at 2°×2.5° resolution. Their importance, particularly in regards to inverse modeling of CH4_{4} emissions, should be evaluated in future studies using online transport in the native general circulation model as a benchmark simulation

    A geostatistical framework for quantifying the imprint of mesoscale atmospheric transport on satellite trace gas retrievals

    Get PDF
    National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2) satellite provides observations of total column‐averaged CO2 mole fractions (X_(CO₂)) at high spatial resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO₂ observations and reliable representations of atmospheric transport. Since X_(CO₂) observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2 soundings. We compare high‐pass‐filtered (<250 km, spatial scales that primarily isolate mesoscale or finer‐scale variations) along‐track spatial variability in X_(CO₂) and X_(H₂O) from OCO‐2 tracks to temporal synoptic and mesoscale variability from ground‐based X_(CO₂) and X_(H₂O) observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along‐track, high‐frequency variability for OCO‐2 X_(H₂O). For X_(CO₂), both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important drivers of the along‐track variance budget

    Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments

    Get PDF
    This paper describes the statistical analysis of annual trends in long term datasets of greenhouse gas measurements taken over ten or more years. The analysis technique employs a bootstrap resampling method to determine both the long-term and intra-annual variability of the datasets, together with the uncertainties on the trend values. The method has been applied to data from a European network of ground-based solar FTIR instruments to determine the trends in the tropospheric, stratospheric and total columns of ozone, nitrous oxide, carbon monoxide, methane, ethane and HCFC-22. The suitability of the method has been demonstrated through statistical validation of the technique, and comparison with ground-based in-situ measurements and 3-D atmospheric models.Peer reviewe

    Observed Hemispheric Asymmetry in Stratospheric Transport Trends From 1994 to 2018

    Get PDF
    ©2020. American Geophysical Union. All Rights Reserved. Total columns of the trace gases nitric acid (HNO3) and hydrogen chloride (HCl) are sensitive to variations in the lower stratospheric age of air, a quantity that describes transport time scales in the stratosphere. Analyses of HNO3 and HCl columns from the Network for the Detection of Atmospheric Composition Change panning 77°S to 79°N have detected changes in the extratropical stratospheric transport circulation from 1994 to 2018. The HNO3 and HCl analyses combined with the age of air from a simulation using the MERRA2 reanalysis show that the Southern Hemisphere lower stratosphere has become 1 month/decade younger relative to the Northern Hemisphere, largely driven by the Southern Hemisphere transport circulation. The analyses reveal multiyear anomalies with a 5- to 7-year period driven by interactions between the circulation and the quasi-biennial oscillation in tropical winds. This hitherto unrecognized variability is large relative to hemispheric transport trends and may bias ozone trend regressions
    corecore