391 research outputs found

    Effects of microstructure and crystallography on crack path and intrinsic resistance to shear-mode fatigue crack growth

    Get PDF
    The paper focuses on the effective resistance and the near-threshold growth mechanisms in theferritic-pearlitic and the pure pearlitic steel. The influence of microstructure on the shear-mode fatigue crackgrowth is divided here into two factors: the crystal lattice type and the presence of different phases.Experiments were done on ferritic-pearlitic steel and pearlitic steel using three different specimens, for whichthe effective mode II and mode III threshold values were measured and fracture surfaces were reconstructed inthree dimensions using stereophotogrammetry in scanning electron microscope. The ferritic-pearlitic andpearlitic steels showed a much different behaviour of modes II and III cracks than that of the ARMCO iron.Both the deflection angle and the mode II threshold were much higher and comparable to the austenitic steel.Mechanism of shear-mode crack behaviour in the ARMCO iron, titanium and nickel were described by themodel of emission of dislocations from the crack tip under a dominant mode II loading. In other testedmaterials the cracks propagated under a dominance of the local mode I. In the ferritic-pearlitic and pearliticsteels, the reason for such behaviour was the presence of the secondary-phase particles (cementite lamellas),unlike in the previously austenitic steel, where the fcc structure and the low stacking fault energy were the mainfactors. A criterion for mode I deflection from the mode II crack-tip loading, which uses values of the effectivemode I and mode II thresholds, was in agreement with fractographical observations

    Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT)

    Get PDF
    Background: Genomic profiling of tumor tissue may aid in identifying predictive or prognostic gene signatures (GS) in some cancers. Retrospective gene expression profiling of melanoma and non-small-cell lung cancer led to the characterization of a GS associated with clinical benefit, including improved overall survival (OS), following immunization with the MAGE-A3 immunotherapeutic. The goal of the present study was to prospectively evaluate the predictive value of the previously characterized GS. Patients and methods: An open-label prospective phase II trial ('PREDICT') in patients with MAGE-A3-positive unresectable stage IIIB-C/IV-M1a melanoma. Results: Of 123 subjects who received the MAGE-A3 immunotherapeutic, 71 (58.7%) displayed the predictive GS (GS +). The 1-year OS rate was 83.1%/83.3% in the GS+/GS- populations. The rate of progression-free survival at 12 months was 5.8%/4.1% in GS+/GS- patients. The median time-to-treatment failure was 2.7/2.4 months (GS+/GS-). There was one complete response (GS-) and two partial responses (GS+). The MAGE-A3 immunotherapeutic was similarly immunogenic in both populations and had a clinically acceptable safety profile. Conclusion: Treatment of patients with MAGE-A3-positive unresectable stage IIIB-C/IV-M1a melanoma with the MAGE-A3 immunotherapeutic demonstrated an overall 1-year OS rate of 83.5%. GS- and GS+ patients had similar 1-year OS rates, indicating that in this study, GS was not predictive of outcome. Unexpectedly, the objective response rate was lower in this study than in other studies carried out in the same setting with the MAGE-A3 immunotherapeutic. Investigation of a GS to predict clinical benefit to adjuvant MAGE-A3 immunotherapeutic treatment is ongoing in another melanoma study. This study is registered at www.clinicatrials.gov NCT00942162

    Incidence of Chlamydia spp., FIV, FeLV in Free-Roaming Cats in Slovakia

    Get PDF
    Boris Vojtek,1 Peter Čechvala,2 Silvia Zemanová,1 Ľuboš Korytár,1 Marián Prokeš,1 Monika Drážovská,1 Patrícia Petroušková,1 Jana Kožiarská Tomčová,1 Anna Ondrejková1 1Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia; 2Veterinary Ambulance, Nová Dubnica, SlovakiaCorrespondence: Anna Ondrejková, University of Veterinary Medicine and Pharmacy, Department of Epizootiology, Parasitology and Protection of One Health, Slovakia, 041 81, Tel +421 915 984 647, Email [email protected]: Free-roaming cats represent a potential reservoir of infectious diseases. The most common co-infections of free-roaming cats include mixed viral, bacterial, fungal, yeast and parasitic infections. This study focuses on the occurrence of Chlamydia spp. feline immunodeficiency virus (FIV), feline leukaemia virus (FeLV) and their co-infections. The diseases accompanied by immune suppression, such as FIV, create favourable conditions for the onset of other diseases and co-infections. The result of co-infection may be a higher susceptibility for other pathogens, as well as the occurrence of more severe clinical symptoms.Patients and Methods: The study involved 168 (113♀ and 55♂) free-roaming adult cats during the years 2021– 2022. All cats belonged to Slovak citizens with permanent residence in the Slovak Republic. Blood samples and swabs (Invasive EUROTUBO® Collection sterile swab, Deltalab O8191 Rubí, Spain) from the conjunctival sac were taken from 168 cats to be later tested by PCR and ELISA methods. Statistical analysis was also performed.Results: The overall prevalence of Chlamydia spp. was 17.26%, of FIV 15.48%, and 5.95% of FeLV. The most significant finding in our study was 3.57% co-infection of FIV and Chlamydia spp. in tested cats.Conclusion: The observed prevalence of Chlamydia spp. FIV and FeLV indicates that the presence of these pathogens in populations of free-roaming cats is endemic.Keywords: cats, chlamydiosis, FIV, FeL

    Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis

    Get PDF
    Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes

    Interactions of the Human MCM-BP Protein with MCM Complex Components and Dbf4

    Get PDF
    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK

    Mutations in PIK3CA are infrequent in neuroblastoma

    Get PDF
    BACKGROUND: Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. METHODS: Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. RESULTS: We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. CONCLUSION: These data suggest that activating mutations in the Ras/Raf-MAPK/PI3K signaling cascades occur infrequently in neuroblastoma. Further, despite compelling evidence for MYC and RAS cooperation in vitro and in vivo to promote tumourigenesis, activation of RAS signal transduction does not constitute a preferred secondary pathway in neuroblastomas with MYCN deregulation in either human tumors or murine models

    Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

    Get PDF
    Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to predict kinase substrate preferences from the primary structure, hampering the understanding of kinase function in physiology and prompting the development of technologies that allow easy assessment of kinase substrate consensus sequences. Hence, we decided to explore the usefulness of phosphorylation of peptide arrays comprising of 1176 different peptide substrates with recombinant kinases for determining kinase substrate preferences, based on the contribution of individual amino acids to total array phosphorylation. Employing this technology, we were able to determine the consensus peptide sequences for substrates of both c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8, two highly homologous kinases with distinct signalling roles in cellular physiology. The results show that although consensus sequences for these two kinases identified through our analysis share important chemical similarities, there is still some sequence specificity that could explain the different biological action of the two enzymes. Thus peptide arrays are a useful instrument for deducing substrate consensus sequences and highly homologous kinases can differ in their requirement for phosphorylation events

    R-Ras Regulates Migration through an Interaction with Filamin A in Melanoma Cells

    Get PDF
    Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins.We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin β1, β2 and β7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaΔ3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaΔ3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly.These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration

    The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling

    Get PDF
    NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling.These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone
    corecore