30 research outputs found

    The logic of kinetic regulation in the thioredoxin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.</p> <p>Results</p> <p>Analysis of a realistic computational model of the <it>Escherichia coli </it>thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models.</p> <p>Conclusions</p> <p>Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.</p

    Mitochondrial Redox Metabolism in Trypanosomatids Is Independent of Tryparedoxin Activity

    Get PDF
    Tryparedoxins (TXNs) are oxidoreductases unique to trypanosomatids (including Leishmania and Trypanosoma parasites) that transfer reducing equivalents from trypanothione, the major thiol in these organisms, to sulfur-dependent peroxidases and other dithiol proteins. The existence of a TXN within the mitochondrion of trypanosomatids, capable of driving crucial redox pathways, is considered a requisite for normal parasite metabolism. Here this concept is shown not to apply to Leishmania. First, removal of the Leishmania infantum mitochondrial TXN (LiTXN2) by gene-targeting, had no significant effect on parasite survival, even in the context of an animal infection. Second, evidence is presented that no other TXN is capable of replacing LiTXN2. In fact, although a candidate substitute for LiTXN2 (LiTXN3) was found in the genome of L. infantum, this was shown in biochemical assays to be poorly reduced by trypanothione and to be unable to reduce sulfur-containing peroxidases. Definitive conclusion that LiTXN3 cannot directly reduce proteins located within inner mitochondrial compartments was provided by analysis of its subcellular localization and membrane topology, which revealed that LiTXN3 is a tail-anchored (TA) mitochondrial outer membrane protein presenting, as characteristic of TA proteins, its N-terminal end (containing the redox-active domain) exposed to the cytosol. This manuscript further proposes the separation of trypanosomatid TXN sequences into two classes and this is supported by phylogenetic analysis: i) class I, encoding active TXNs, and ii) class II, coding for TA proteins unlikely to function as TXNs. Trypanosoma possess only two TXNs, one belonging to class I (which is cytosolic) and the other to class II. Thus, as demonstrated for Leishmania, the mitochondrial redox metabolism in Trypanosoma may also be independent of TXN activity. The major implication of these findings is that mitochondrial functions previously thought to depend on the provision of electrons by a TXN enzyme must proceed differently

    Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics

    No full text
    Tetrahymena thermophila (T. thermophila) is a ciliated protozoon that can detect freshwater pollution by heavy metals (“whole-cell biosensor”). This work employed a systematic bioinformatics approach to predict and analyze the metalloproteome of T. thermophila for the essential Zn, Cu and the non-essential Cd. 3784 metal-binding proteins were identified compared to the 456 annotated so far in UniProt. The localization, functional classification, and the functionally enriched network of the newly identified metalloproteome are presented. Cd toxicity could be explained in terms of the metal replacing Cu and especially Zn in MAPKs, transporters and antioxidant enzymes. The predicted results for Cd toxicity and responses reflect those observed experimentally in different organisms after their exposure to Cd. © 2017, Springer-Verlag Berlin Heidelberg

    Molecular Mapping of Functionalities in the Solution Structure of Reduced Grx4, a Monothiol Glutaredoxin from Escherichia coli

    No full text
    The ubiquitous glutaredoxin protein family is present in both prokaryotes and eukaryotes, and is closely related to the thioredoxins, which reduce their substrates using a dithiol mechanism as part of the cellular defense against oxidative stress. Recently identified monothiol glutaredoxins, which must use a different functional mechanism, appear to be essential in both Escherichia coli and yeast and are well conserved in higher order genomes. We have employed high resolution NMR to determine the three-dimensional solution structure of a monothiol glutaredoxin, the reduced E. coli Grx4. The Grx4 structure comprises a glutaredoxin-like alpha-beta fold, founded on a limited set of strictly conserved and structurally critical residues. A tight hydrophobic core, together with a stringent set of secondary structure elements, is thus likely to be present in all monothiol glutaredoxins. A set of exposed and conserved residues form a surface region, implied in glutathione binding from a known structure of E. coli Grx3. The absence of glutaredoxin activity in E. coli Grx4 can be understood based on small but significant differences in the glutathione binding region, and through the lack of a conserved second GSH binding site. MALDI experiments suggest that disulfide formation on glutathionylation is accompanied by significant structural changes, in contrast with dithiol thioredoxins and glutaredoxins, where differences between oxidized and reduced forms are subtle and local. Structural and functional implications are discussed with particular emphasis on identifying common monothiol glutaredoxin properties in substrate specificity and ligand binding events, linking the thioredoxin and glutaredoxin systems
    corecore