12,698 research outputs found
Social interaction of patients and personnel in a ward situation
Thesis (M.S.)--Boston Universit
Aharonov-Bohm Effect and Coordinate Transformations
Resorting to a Gedankenexperiment which is very similar to the famous
Aharonov-Bohm proposal it will be shown that, in the case of a Minkowskian
spacetime, we may use a nonrelativistic quantum particle and a noninertial
coordinate system and obtain geometric information of regions that are, to this
particle, forbidden. This shows that the outcome of a nonrelativistic quantum
process is determined not only by the features of geometry at those points at
which the process takes place, but also by geometric parameters of regions in
which the quantum system can not enter. From this fact we could claim that
geometry at the quantum level plays a non-local role. Indeed, the measurement
outputs of some nonrelativistic quantum experiments are determined not only by
the geometry of the region in which the experiment takes place, but also by the
geometric properties of spacetime volumes which are, in some way, forbidden in
the experiment.Comment: 11 pages, 1 figure, accepted in Mod. Phys. Letts.
Quantum tensor product structures are observable-induced
It is argued that the partition of a quantum system into subsystems is
dictated by the set of operationally accessible interactions and measurements.
The emergence of a multi-partite tensor product structure of the state-space
and the associated notion of quantum entanglement are then relative and
observable-induced. We develop a general algebraic framework aimed to formalize
this concept. We discuss several cases relevant to quantum information
processing and decoherence control.Comment: 5 Pages LaTe
Qubit noise spectroscopy for non-Gaussian dephasing environments
We introduce open-loop quantum control protocols for characterizing the
spectral properties of non-Gaussian noise, applicable to both classical and
quantum dephasing environments. The basic idea is to engineer a
multi-dimensional frequency comb via repetition of suitably designed pulse
sequences, through which the desired high-order noise spectra may be related to
observable properties of the qubit probe. We prove that access to a high time
resolution is key to achieve spectral reconstruction over an extended
bandwidth, overcoming limitations of existing schemes. Non-Gaussian
spectroscopy is demonstrated for a classical noise model describing quadratic
dephasing at an optimal point, as well as a quantum spin-boson model out of
equilibrium. In both cases, we obtain spectral reconstructions that accurately
predict the qubit dynamics in the non-Gaussian regime.Comment: 11 pages, 4 figure
Group-theoretical structure of quantum measurements and equivalence principle
The transverse group associated to some continuous quantum measuring
processes is analyzed in the presence of nonvanishing gravitational fields.
This is done considering, as an exmaple, the case of a particle whose
coordinates are being monitored. Employing the so called restricted path
integral formalism, it will be shown that the measuring process could always
contain information concerning the gravitational field. In other words, it
seems that with the presence of a measuring process the equivalence principle
may, in some cases, break down. The relation between the breakdown of the
equivalence principle, at quantum level, and the fact that the gravitational
field could act always as a decoherence environment, is also considered. The
phenomena of quantum beats of quantum optics will allow us to consider the
possibility that the experimental corroboration of the equivalence principle at
quantum level could be taken as an indirect evidence in favor of the
quantization of the gravitational field, i.e., the quantum properties of this
field avoid the violation of the equivalence principle.Comment: 13 pages, accepted in Modern Physics Letters
Fault-Tolerant Quantum Dynamical Decoupling
Dynamical decoupling pulse sequences have been used to extend coherence times
in quantum systems ever since the discovery of the spin-echo effect. Here we
introduce a method of recursively concatenated dynamical decoupling pulses,
designed to overcome both decoherence and operational errors. This is important
for coherent control of quantum systems such as quantum computers. For
bounded-strength, non-Markovian environments, such as for the spin-bath that
arises in electron- and nuclear-spin based solid-state quantum computer
proposals, we show that it is strictly advantageous to use concatenated, as
opposed to standard periodic dynamical decoupling pulse sequences. Namely, the
concatenated scheme is both fault-tolerant and super-polynomially more
efficient, at equal cost. We derive a condition on the pulse noise level below
which concatenated is guaranteed to reduce decoherence.Comment: 5 pages, 4 color eps figures. v3: Minor changes. To appear in Phys.
Rev. Let
Magnon heralding in cavity optomagnonics
In the emerging field of cavity optomagnonics, photons are coupled coherently
to magnons in solid-state systems. These new systems are promising for
implementing hybrid quantum technologies. Being able to prepare Fock states in
such platforms is an essential step towards the implementation of quantum
information schemes. We propose a magnon-heralding protocol to generate a
magnon Fock state by detecting an optical cavity photon. Due to the
peculiarities of the optomagnonic coupling, the protocol involves two distinct
cavity photon modes. Solving the quantum Langevin equations of the coupled
system, we show that the temporal scale of the heralding is governed by the
magnon-photon cooperativity and derive the requirements for generating high
fidelity magnon Fock states. We show that the nonclassical character of the
heralded state, which is imprinted in the autocorrelation of an optical "read"
mode, is only limited by the magnon lifetime for small enough temperatures. We
address the detrimental effects of nonvacuum initial states, showing that high
fidelity Fock states can be achieved by actively cooling the system prior to
the protocol.Comment: 17 pages, 14 figures. Correction of typos, version as publishe
Randomized Dynamical Decoupling Techniques for Coherent Quantum Control
The need for strategies able to accurately manipulate quantum dynamics is
ubiquitous in quantum control and quantum information processing. We
investigate two scenarios where randomized dynamical decoupling techniques
become more advantageous with respect to standard deterministic methods in
switching off unwanted dynamical evolution in a closed quantum system: when
dealing with decoupling cycles which involve a large number of control actions
and/or when seeking long-time quantum information storage. Highly effective
hybrid decoupling schemes, which combine deterministic and stochastic features
are discussed, as well as the benefits of sequentially implementing a
concatenated method, applied at short times, followed by a hybrid protocol,
employed at longer times. A quantum register consisting of a chain of spin-1/2
particles interacting via the Heisenberg interaction is used as a model for the
analysis throughout.Comment: 7 pages, 2 figures. Replaced with final version. Invited talk
delivered at the XXXVI Winter Colloquium on the Physics of Quantum
Electronics, Snowbird, Jan 2006. To be published in J. Mod. Optic
Enhanced Convergence and Robust Performance of Randomized Dynamical Decoupling
We demonstrate the advantages of randomization in coherent quantum dynamical
control. For systems which are either time-varying or require decoupling cycles
involving a large number of operations, we find that simple randomized
protocols offer superior convergence and stability as compared to deterministic
counterparts. In addition, we show how randomization always allows to
outperform purely deterministic schemes at long times, including combinatorial
and concatenated methods. General criteria for optimally interpolating between
deterministic and stochastic design are proposed and illustrated in explicit
decoupling scenarios relevant to quantum information storage.Comment: 4 pages, 3 figures, replaced with final versio
- …
