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a b s t r a c t

When the future wind direction is uncertain, the tactical decisions of a yacht skipper involve a stochastic
routing problem. The objective of this problem is to maximise the probability of reaching the next mark
ahead of all the other competitors. This paper describes some numerical experiments that explore the
effect of the skipper's risk attitude on their policy when match racing another boat. The tidal current at
any location is assumed to be negligible, while the wind direction is modelled by a Markov chain. Boat
performance in different wind conditions is defined by the output of a velocity prediction program, and
we assume a known speed loss for tacking and gybing. We compare strategies that minimise the average
time to sail the leg with those that seek to maximise the probability of winning, and show that by
adopting different attitudes to risk when leading or trailing the competitor, a skipper can improve their
chances of winning.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we model and analyse the problem faced by a
skipper who wants to sail an upwind leg of a yacht race, rounding
the mark before his opponent. This problem falls into the category
of stochastic shortest-path problems, where the cost function to be
minimised is the time needed to reach the mark, and it depends
on stochastic quantities such as wind direction. Many problems
fall into this category and involve routing for emergency response,
both civil (Yamada, 1996) and military (Resch et al., 2003), and
applications in logistics (Fleischmann et al., 2004) and transport
(Shuxia, 2012). The aim is to find a path between two vertices of a
graph such that the sum of its constituent edges, often represent-
ing a cost, is minimised. When cost depends on random quantities
this becomes a stochastic problem, and the standard objective is to
minimise expected costs (where costs include time) (Bertsekas
and Tsitsiklis, 1991). For yacht races, models which minimise the
expected time to finish, or to reach the next mark, have been
studied in a number of papers (Philpott and Mason, 2001; Philpott,
2005). This might be appropriate in fleet races where corrected
time over a number of races forms a basis for scoring points. Even
so, such scoring systems assign rankings in each race and it is well
known that rank-based scoring leads to different incentives than
those from performance on average (Anderson, 2012).

As observed in Philpott (2005) rank-based scoring takes its
most extreme form in match racing, where the objective is to
maximise the probability of arriving before the competing
yacht. Indeed the time difference between the two boats is not
of interest, as opposed to its sign. In this context, the attitude
towards risk of the skipper assumes a greater importance. The aim
of this work is to show that by changing the skipper's attitude to
risk, it is possible to define a strategy that performs better in
match races than strategies aimed at minimising the expected
time to finish.

Of course, in most forms of match racing, the interaction
between the boats is important. A leading yacht will attempt to
cover a trailing yacht, not only for tactical reasons, but also to spill
turbulent air on the trailing yacht's sails to reduce their drive.
Forcing another boat to tack to avoid a collision is also a tactical
ploy to increase a yacht's advantage. In this paper we choose to
ignore these effects, as well as assuming identical yachts and crew
expertise. This is done for modelling convenience as well as
simplicity. By focusing solely only on risk attitude we can see to
what extent this is important, other effects being equal.

The paper is laid out as follows. In the next section we describe
the model of the yacht and basic sailing strategy for the upwind
leg of a match race. We then review dynamic programming as an
approach to finding the strategy that minimises the expected
time to reach the next mark. The following section shows how
this is implemented in a routing model that accounts for diffe-
rent risk attitudes of the skipper. We then present the results
of some simulations of the strategies that emerge from the
routing model.
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1.1. Sailing strategy

The speed of a sailing yacht depends on the wind speed and on
the angle between boat heading and wind direction. It is usually
expressed as a polar diagram like the one shown in Fig. 1. The
numbers around the semicircle represent different true wind
angles, while the radial ones represent the boat speed. The red
line corresponds to the plot of boat speed for a particular true
wind speed. While no direct course is possible straight into the
wind, it is possible to sail upwind with an angle between wind
direction and sailed course which is usually between 301 and 501.
Sailing closer to the wind direction (lower angle) makes the course
shorter, but when sailing at higher angles a boat is faster. Velocity
made good (VMG) is the component of yacht velocity in the wind
direction. With a constant wind direction from the top mark, an
optimal policy maximises VMG. This is typically attained at a true
wind angle of around 40–451 (as in this example). In a polar
diagram like the one in Fig. 1, it is possible to find the maximum
VMG for a given wind speed by finding the intersection between
the polar corresponding to the wind speed and the line perpendi-
cular to the upwind direction. For this reason the common route
towards an upwind mark, or in general towards the direction from
which the wind blows, is a zigzag route. Such a route requires
changes of direction which are called tacks. When manoeuvring
for a tack, a boat points for a few seconds directly into the wind,
therefore causing a temporary decrease in boat speed. If the wind
is constant during the race and all over the racing area, trying

to do the minimum number of tacks is the best choice. Fig. 2(a)
shows two possible routes. In a constant wind, the route on the
left is faster because it involves just one tack. Fig. 2(b) shows a
situation in which the wind shifts towards the left over the
duration of the leg. The best policy in this case is to go to the left
of the course (referred to as being on starboard tack), and then tack
and point towards the mark, while a myopic policy that begins the
race going to the right (referred to as being on port tack) turns out
to be suboptimal.

In real races the evolution of the wind can be much more
complicated than these examples, with temporary shifts or gusts
that a sailor seeks to take advantage of. Moreover wind has a
random component. While racing, it is difficult to know how the
wind is behaving at another location, or to foresee how it will
behave once that point is reached. In the presence of randomness
the optimal course in Fig. 2(b) might turn out to be worse than a
myopic policy that tacks on every wind shift. For this reason
sailors tend to try and stay in the centre of the course to enable
shifts in wind direction to be exploited by tacking, while avoiding
the risk of overlaying the mark.

In the presence of a competitor, a policy that avoids the course
boundaries while staying close to the competitor reduces the risk
of being beaten, at least when the competitor is the trailing boat.
On the other hand, when the competitor is leading, it can make
sense for a skipper to take a risk and explore the corners of the
course hoping for a favourable wind shift. This is the phenomenon
that we seek to model in this paper.

1.2. Dynamic programming

Finding an optimal set of tacks when the wind varies randomly
requires a stochastic dynamic optimisation model. In contrast to
the deterministic case, a solution does not consist of a single
optimal path for a specific wind realisation, but a policy that is
optimal over a range of wind realisations. Policies can be com-
puted a priori and respect the principle of optimality: an optimal
policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision
(Bellman, 1957). A policy that respects this principle can be found
with dynamic programming (Bertsekas, 1995). Dynamic program-
ming has been successfully applied in sailing in both ocean races
and short course racing (see Philpott and Mason, 2001; Philpott,
2005). In this work we adapt the short-course model described in
Philpott and Mason (2001) and Philpott (2005) with the aim of
incorporating the skipper's attitude towards risk in their actions.

The risk that a skipper is willing to take is usually influenced by
his position with respect to the opponent. A common behavioural
pattern is to be conservative, or risk averse, when in a leading
position, while being risk seeking when losing. Here we interpret
risk aversion as being pessimistic about wind shifts, believing that
any shifts we observe will not be to our advantage. In contrast, a
risk-seeking skipper will be optimistic about wind shifts and act as
if these are more likely to be to his advantage. Such attitudes can
be modelled by altering the transition probabilities of the process
that defines wind shifts.

To understand the effect of risk-averse or risk-seeking skippers,
we develop a race modelling program (RMP) for simulating races
between two boats. The first RMP was developed in 1987 for the
America's Cup syndicate Stars and Stripes and is described in
Letcher et al. (1987). Since then, RMPs have been used mainly in
America's Cup applications to compare different designs (see e.g.
Philpott et al., 2004). In our case, since we are interested in
comparing tactical choices, we model two identical boats (i.e. they
have the same polar diagram).

Fig. 1. Example of a polar diagram (velocities in m/s and angles in degrees).
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

Fig. 2. Example of upwind routes. (a) Constant wind and (b) left wind shift.
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2. Method

2.1. Dynamic programming

We consider an upwind leg of 6000 m (corresponding to 3.24
nautical miles, which approximates the length of the 2013 Amer-
ica's Cup course), and 4000 m wide. In the coordinate system used
the starting line is located on the x-axis, and centred around the
origin, while the upwind mark is located on the y-axis. The racing
area is discretised into a rectangular grid with N¼20 increments
Δx across the course and M¼400 increments Δy in the direction
of the course, as shown in Fig. 3. The N�1 lines defining the grid
that are perpendicular to the y-axis will be referred to in the
following as “cross sections”. The dynamic program is at stage i
when the yacht crosses the ith cross section.

The state variables are the yacht's position xi, the wind direc-
tion wi observed at stage i, and the current tack z (where z¼0
denotes starboard tack and z¼1 denotes port tack). The wind
direction wi is random and satisfies the Markov property, namely
that the probability distribution for the variable wi, conditioned on
all the previous values, is equal to the distribution for the variable
wi conditioned just on the last event:

Pðwi ¼ vjwi�1 ¼ vi�1;wi�2 ¼ vi�2;…;w0 ¼ v0Þ
¼Pðwi ¼ vjwi�1 ¼ vi�1Þ ð1Þ

for every i40 and for every wi in the state space.
The actions at each stage are whether to tack the boat (i.e.

change z to 1�z) or continue on the same tack. As mentioned in
the Introduction, a tacking manouvre implies a time loss that will
be denoted as τ. Given a yacht's polar and its location, we can
compute tði; x; x0;w; zÞ, defined to be the time to sail from location
ðx; iΔyÞ to ðx0; ðiþ1ÞΔyÞ if it is on tack z and the observed wind
direction is w.

We define the value function Tiðxi;wi; zÞ to be the minimum
expected time to sail from location xi on cross section i to the top
mark given wind observation wi, and current tack z. Clearly
TMðx;wi; zÞ ¼ 0 when location x is at the top mark, and we choose
TMðx;wi; zÞ ¼1 otherwise.

We compute T0ðx0;w0; zÞ for ðx0;w0; zÞ corresponding to the
boat's position and tack on the start line, using a dynamic
programming recursion. First define at stage i the function

Fði; x; x0;w; zÞ ¼ tði; x; x0;w; zÞþEw0 ½Tiþ1ðx0;w0; zÞ∣w�; ð2Þ

where w0 is the wind direction that is observed at stage i þ 1. Now
we can define the recursion as follows:

Tiðxi;wi; zÞ ¼min
min

xiþ 1 AX
Fði; xi; xiþ1;wi; zÞ

τþ min
xiþ 1 AX

Fði; xi; xiþ1;wi;1�zÞ

8><
>:

ð3Þ

where X is the set of x coordinates of positions ðxiþ1; ðiþ1ÞΔyÞ
that can be reached at stage iþ1 from position xi at stage i. More
details on the recursive procedure defined by Eqs. (2) and (3) can
be found in Philpott and Mason (2001).

2.2. Wind modelling

We assume the wind speed to be constant during the race,
focusing on the changes in wind direction. As discussed in the
previous section the dynamic programming algorithm we use
assumes that the wind direction satisfies the Markov property.
Although more refined wind models are being developed (see
for instance the recent reviews by Costa et al., 2008 and Bitner-
Gregersen et al., 2014), Markov models are computationally very
efficient and can still capture most of the statistical properties that
are relevant in certain applications (Shamshad et al., 2005; Sahin
and Sen, 2001).

For tactical purposes we are interested in changes in wind
direction that significantly affect the racing time. We therefore
define a finite number of wind direction states: namely �451,
�401,…, 01, þ51,…, þ451, where 01 represents the wind direction
at which the upwind mark is set, and the other states represent
shifts of 751 from that direction.

For a system with a finite number of states the stochastic
process is uniquely defined with an initial distribution for w0 and a
transition matrix P. The matrix elements Pjk represent the prob-
ability that the system at time step i is in state k conditioned on
the fact that it was in state j at the previous time step i�1:

Pjk ¼Pðwi ¼ kjwi�1 ¼ jÞ
In order to obtain a realistic transition matrix we considered
a time series of wind measurements from a weather station
installed on the Newcastle University research vessel, and then
built the matrix P using a maximum likelihood estimator. As we
use for the model a grid with 15 m resolution in the upwind
direction and the decisions are taken every time the yacht reaches
a cross section, the wind is modelled using a time step of 3 s,
which is the time spent on average to move between two
consecutive cross sections. The recorded wind direction signal
was sampled every three seconds, and the corresponding wind
directions were placed in K bins of amplitude 51. The number of
jumps from bin j to bin k divided by the total number of jumps out
of bin j defines the value Pjk; j; k¼ 1;2;…;K , in the transition
matrix.

Given a transition matrix P, Eq. (2) becomes

Fði; x; x0;wj; zÞ ¼ tði; x; x0;wj; zÞþ ∑
k ¼ K

k ¼ 1
PjkTiþ1ðx0;wk; zÞ: ð4Þ

2.3. Risk modelling

We now turn our attention to the risk attitude of the yacht
skipper. There is an enormous literature on modelling risk (for a
recent introduction see Anderson, 2013). To model risk aversion,
we adopt an approach based on the theory of coherent risk
measures (Artzner et al., 1999). As shown in Artzner et al. (1999)
coherent risk measures can be expressed as the worst-case
expectation over a convex set of probability distributions to give
a risk-adjusted expectation. Given the current wind direction state,Fig. 3. Schematic representation of the course.
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the probability distribution that we work with is the correspond-
ing row of the transition matrix. To model risk aversion we choose
the worst possible transition probabilities from a convex set D of
transition matrices. In other words, (4) becomes

Fði; x; x0;wj; zÞ ¼ tði; x; x0;wj; zÞþmax
PAD

∑
k ¼ K

k ¼ 1
PjkTiþ1ðx0;wk; zÞ: ð5Þ

An interpretation of (5) is illuminating. A boat skipper who is
winning will be risk averse. She will try to behave safely, trying to
stay ahead and to minimise her losses in bad wind outcomes.
Using (5) in a recursion is pessimistic about the next wind shift
and assigns a higher probability to the worst outcomes (i.e. head-
ing shifts). Being pessimistic about random outcomes reduces risk,
at some loss in expected performance.

Risk seeking behaviour has been less well studied, although it is
often given as an explanation for participation in lotteries and
negative expectation gambles, where optimistic participants place
greater weight on winning probabilities than their real values. In
our context we model risk seeking by choosing the best possible
transition probabilities from a convex set D of transition matrices.
In other words, (4) becomes

Fði; x; x0;wj; zÞ ¼ tði; x; x0;wj; zÞþmin
PAD

∑
k ¼ K

k ¼ 1
PjkTiþ1ðx0;wk; zÞ: ð6Þ

This has the following interpretation. A boat skipper who is
losing will seek risk. If she adopts a minimum expected finish time
strategy against another skipper who minimises his expected time
to finish, then she will tend to make the same decisions (unless the
boats see very different winds) and lose the race almost certainly.
She will instead seek different wind conditions from the compe-
titor. Using (6) in a recursion will be optimistic about the possible
advantageous wind shifts and assign a higher probability to these
outcomes (i.e. lifting shifts). Being optimistic about random out-
comes increases risk, as well as incurring some loss in expected
performance.

We implement (5) and (6) in the recursion by adding a
transformation in the solver that post multiplies the transition
matrix by another matrix which redistributes the probabilities.
The resulting matrix has to be normalised in order to represent
again a probability distribution.

3. Results

Fig. 4 shows a graphical representation of the transition matrix
for the Markov model obtained with the maximum likelihood
estimator as described in the previous section. With a notation
that will be used throughout this paper, we use a grey scale to
represent values in the interval [0, 1] where white represents
0 and black represents 1. It can be noticed that the diagonal is
dominant, meaning that, in general, if the wind is in state i, the
most probable state for the next step is to remain in state i.

Moreover, when the wind has deviated from the mean, the event
of a shift back towards the mean value is more likely than one in
the same direction.

The wind for the simulations was generated as described in
the previous section. The Markov chain defines a discrete wind
direction. This can be made continuous by superimposing a mean-
reversion noise process (see Philpott et al., 2004). However we did
not do this as we found that the behaviour of the simulated wind
signal, achieved with no additional noise component, was similar
to the empirical one, as can be seen in Fig. 5, with close values of
mean and variance on different sub-intervals. A wind history of
400 values was generated for each of the 4000 simulated races.

Fig. 6 shows a histogram of the time needed by a yacht
following the policy generated to minimise the expected time of
arrival, according to the wind distribution previously modelled.
The distribution is asymmetric, and this is due to the fact that even
with a very favourable evolution of the wind there is a minimum
time needed to complete the course. On the other hand, even with
a policy which is effective in the majority of the cases, it is possible
to be very unlucky and need a much higher time.

This policy was generated using a risk-neutral transition matrix
for wind direction as pictured in Fig. 4. When the skipper is risk
seeking or risk averse we replace this with a modified transition
matrix. A sailor who is losing will seek risk. This corresponds to
increasing her confidence of a lifting wind shift while discounting
the likelihood of a heading wind shift. The transition matrices we
use to represent a risk-seeking skipper are shown in Fig. 7(a) and
(b). As shown in the figures, advantageous shifts (cells below the
diagonal when the skipper is to the left of the opposition, and cells
above when on the right) happen with higher probability than in
the risk-neutral case. The remaining probabilities in each row are
reduced to add to one.

The transition matrices for a risk-averse skipper are con-
structed similarly. Here bad wind shifts (above the diagonal when
the skipper is to the left of the opposition, and below the diagonal

Fig. 4. Representation of the transition matrix obtained for the wind model.

Fig. 5. Sixty-minute example of artificially generated wind and sixty-minute
example of recorded wind.

Fig. 6. Distribution of arrival time of boat following the optimum policy.
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when on the right) happen with higher probability than in the
risk-neutral case. In our experiments we have obtained transition
matrices for a risk-averse policy by simply swapping the matrices
in Fig. 7(a) and (b).

Simulations were carried out in order to verify the differences
between a risk-neutral policy that minimises expected arrival time
at the top mark, and a policy generated assuming either risk
seeking or risk averse behaviour. Results showed that policies that
minimise expected arrival time won more races than either being
consistently risk seeking or risk averse.

However, combining the strategies together (to allow both risk-
seeking and risk-averse behaviour at different times) can lead to a
significant improvement in the chances of winning. We simulated
races between two boats that are denoted as boat A and boat B. Both
boats start the race at the same time, on two different (random) points
along the starting line. Boat A experiences the simulated wind and
always follows the risk-neutral policy (to minimise expected arrival
time). Boat B experiences the same wind as A if their distance apart is
less than dmin ¼ 10 m, an independent wind if their distance is greater
than dmax ¼ 100 m, and a linear combination of A's wind and an
independent sample if their distance is between dmin and dmax. At
every step of the simulation, if B is more than 15 s behind A, she uses
the risk-seeking policy depending on the side of the course; if B is
more than 20 s ahead of A, she uses the risk-averse policy, while she
uses the optimum risk-neutral policy otherwise. Results of those
simulated races are shown in Fig. 8.

The x-axis shows the arrival time of boat B minus the arrival
time of boat A at the top mark. The average time difference is
positive (actually 16 s in this plot). This means that B arrives 16 s
later on average than A, as one would expect, since A is using the
optimum policy to minimise the average time. However about 63%

of the race outcomes are to the left of zero, meaning that B wins
63% of the time (always by a small margin). Of course sometimes B
is hopelessly outclassed, losing by 400 s (just around 0.01% of the
times, and those are extremely unfavourable events) but this is
because B takes high risks when behind. If we consider p¼0.5 win
probability as a null hypothesis, then the probability of winning
more than 63% of 5000 races by chance is the probability that a
binomial random variable with mean 5000p and variance 5000p
(1�p) exceeds 3150, which is negligible.

The standard error of the value 0.63 can be estimated using the
central limit theorem to be approximately 0.0035. So we can be
97.5% confident that the hybrid policy will win at least 62.3% of the
races (i.e. 2 standard errors less than 0.63).

In order to quantify the tactical improvement on the policy we
compare the results obtained by boat A and boat B with a third
boat C that has perfect knowledge of the future behaviour of the
wind. In this case we simulated 1000 races. Obviously the boat
with perfect knowledge of the wind scenario always wins and the
increases in arrival time of A and B are always positive. The sample
average difference in time of arrival is 133 s for boat A while for
boat B the sample average difference is 149 s. The difference is not
significant because of high variance and low sample size. However
this experiment confirms a theoretical result: the expected time
difference for boat A relative to C is never more than the expected
time difference for boat B relative to C (see Appendix for proof).

4. Conclusions

In this paper we have presented a method for approximating a
solution of a stochastic shortest path problem with applications to
yacht racing. We showed that with an adequate subdivision of the
problem it is possible to find a solution that minimises the
expected time needed to reach an upwind mark during a race.

Moreover, we introduce for the first time a model of the risk
attitude of the sailor. We showed that if a skipper of a trailing boat has
a risk-seeking attitude it enhances the chance to win the race. An
important result of the simulations run to simulate races was that
aiming at minimising the expected time to finish is not always the
best approach: being on average slower might allow a bigger prob-
ability of winning against an opponent following a fixed policy.

The results presented in this paper underline that when trying
to optimise a policy in order to win a competition, looking at
average values is rarely the best approach, and accounting for
differing risk attitudes might give policies that perform signifi-
cantly better. Further work is being carried out in order to validate
the model with data registered during America's Cup races, and
we are developing methodologies for learning risk parameters that
yield maximum win probabilities.
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Appendix

Proposition 1. Minimising the expected arrival time over all strate-
gies will give a policy that is slower than a perfect skipper by the least
amount on average.

Fig. 7. Modified transition matrices for a risk-seeking skipper. Advantageous wind
shifts occur with higher probability than disadvantageous ones. (a) Yacht on the
left-hand side of competitor and (b) yacht on the right-hand side of competitor.

Fig. 8. Histogram of arrival time of B minus arrival time of A.
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Proof. Suppose a perfect skipper sails races in wind that she
predicts perfectly. Each race is a random sample of wind and so
her time to finish is an independent identically distributed random
variable T.

Suppose she now sails a strategy s that is not clairvoyant in
each of these same wind conditions. The time to finish under this
strategy is an independent identically distributed random variable
S(s).

Now the delay in finishing under strategy s versus the perfect
strategy is also an independent identically distributed random
variable DðsÞ ¼ SðsÞ�T . The expected delay from sailing s is then

E½DðsÞ� ¼ E½SðsÞ��E½T �:

To minimise this we should minimise E½SðsÞ� as E½T � is a
constant. So the strategy that minimises expected delay after a
clairvoyant skipper is the one that minimises expected arrival
time. □
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