175 research outputs found
Skin Cancer Detection in Deep Learning Using Restnet-50 Model
Pore and skin cancers are one of the riskiest types of cancer. DNA is a type of nucleic acid. Breaks in skin cells that do non get fixed cause genetic flaws or mutations in the skin, which is how skin malignancies develop. Pores and skin cancers have the inclination to step by step spread over different bits components, so i curable in initial ranges, which is why it's far more peasant to detect at early ranges. Due to the increased prevalence of skin cancer, its high mortality rate, and the high price of medical treatments, it is crucial to understand the early warning studies signs of skin cancer. Due to the importance of these issues, researchers take created a variety of primary detection techniques for skin and pore cancers. The characteristics of a lesion include its symmetry, colouring, duration, form, and so on. Are used to discover most cancers and differentiate benign pores and skin cancers from most cancers. This paper gives an in-depth systematic overview of deep studying techniques for detecting pores and skin cancer early. Study papers posted popular nicely-reputed periodicals, appropriate toward the problem of pores and pores and skin most cancers diagnosis had been analysed. Study results are provided in equipment, charts, stands, strategies, as well as models for higher data
Synthesis and anti-oxidant activity of novel 6,7,8,9 tetra hydro- 5H-5-(2'-hydroxy phenyl)-2-(4'-substituted benzylidine)- 3-(4-nitrophenyl amino) thiazolo quinazoline derivatives
In the present study, a series of novel thiazolo quinazoline derivatives weresynthesized by condensation of different aromatic aldehydes with 4-nitro aniline. The chemical structures of the synthesized compounds were confirmed by means of IR, 1H-NMR, mass spectroscopy and elemental analyses. These compounds were screened for anti-oxidant activity by DPPH radical assay, nitric oxide scavenging activity and Hydrogen Peroxide scavenging activity. Among the synthesized compounds 5d, 5c and 5b was found to be the most potent anti-oxidant activity
Synthetic aperture radar and optical remote sensing image fusion for flood monitoring in the Vietnam lower Mekong basin: a prototype application for the Vietnam Open Data Cube
Flood monitoring systems are crucial for flood management and consequence mitigation in flood prone regions. Different remote sensing techniques are increasingly used for this purpose. However, the different approaches suffer various limitations, including cloud and weather effects (optical data), and low spatial resolution and poor colour presentation (synthetic aperture radar data). This study fuses two data types (Landsat and Sentinel-1) to overcome these limitations and produce better quality images for a prototype flood application in the Vietnam Open Data Cube (VODC). Visual and quantitative evaluation of fused image quality revealed improvement in the images compared with the original scenes. Ground-truth data was used to develop the study flood extraction algorithm and we found a good agreement between our results and SERVIR Mekong (a joint initiative by the US agency for International Development (USAID), National Aeronautics and Space Administration (NASA), Myanmar, Thailand, Cambodia, Laos and Vietnam) maps. While the algorithm is run on a personal computer (PC), it has a clear potential to be developed for application on a big data system
Recommended from our members
High-Throughput Drug Screening Identifies a Potent Wnt Inhibitor that Promotes Airway Basal Stem Cell Homeostasis.
Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that β-catenin phosphorylated at Y489 (p-β-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/β-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/β-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-β-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-β-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/β-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury
UV Spectrophotometric Method for Determination of Cinitapride in Pure and its Solid Dosage Form
A new, rapid, precise, accurate and sensitive analytical method was developed for the UV spectrophotometric assay of cinitapride (CTP). The drug obeyed the Beer's law and showed good correlation. It showed absorption maxima at 260 nm in methanol. The linearity was observed between 5-40 µg mL-1. The results of analysis were validated by recovery studies. The recovery was more than 99%. The proposed method is the only method available for spectrophotometric determination of the drug. It is simple, precise, sensitive and reproducible and can be used for the routine quality control testing of the marketed formulations
Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.
BackgroundCTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation.ResultsHere we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells.ConclusionsWe discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells
Influence of sonication on the physicochemical and biological characteristics of selenium-substituted hydroxyapatites
Although the material hydroxyapatite (HAP) has excellent porous, biocompatible, and biodegradable properties, its mechanical strength and microbial inhibition rate are not adequate for its direct use in bone tissue engineering or in constructing artificial teeth. To overcome some of its limitations, in the present study, we have formed an organic-inorganic composite with an altered internal structureviadoping selenium (Se) cations into the lattice of HAP. We have synthesized Se-substituted HAP (Se-HAP) composites with different Se/P ratios (0.01, 0.05, and 0.1 M)viaa wet chemical route in which two different sets of samples were collected (1) after only precipitation (referred to as the precipitation method) and (2) after precipitation followed by sonication (referred to as the sonochemical method). FTIR and Raman spectroscopic analyses confirmed the successful doping of Se into the HAP matrices, while powder XRD studies indicated their highly crystalline nature, which was significantly influenced by Se doping. The XRD data also showed that the Se-HAP particles formed by the precipitation method have a size of 56 nm and those formed by the sonochemical method have a size of 29 nm. Morphological analysis by means of SEM and TEM indicated that the sonochemical method produces well-defined rod-shaped particles, while the precipitation method produces particles with agglomerated structures. Hemolytic studies confirmed that the Se-HAP particles are biocompatible, and that the hemolytic ratio increases with the Se content. In addition, antibacterial studies indicated that Se-HAP responds quite well against a Gram-positive strain (S. aureus), on a par with the response to a Gram-negative strain (P. aeruginosa). Finally,in vitrocell viability and proliferation studies indicated an increase in the proliferation capacity of non-cancer cells (NIH-3T3 fibroblasts) and a considerable reduction in the viability of cancer cells (MG-63 osteosarcoma). Based on the overall analysis, the Se-HAP samples formed by the sonochemical approach could have potential for biomedical applications in bone cell repair, growth, and regeneration
Correction to: Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization.
The original article [1] contains an error in the legend of Fig 5 whereby the descriptions for panels 5d and 5e are incorrect; as such, the corrected legend can be viewed below with its respective figure images
Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac
<p>Abstract</p> <p>Background</p> <p>Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which has been shown to increase the susceptibility of various bacteria to antimicrobials and demonstrated to have broad antimicrobial activity. This study describes transcriptome alterations in <it>S. aureus </it>strain COL grown with diclofenac and characterizes the effects of this NSAID on antibiotic susceptibility in laboratory, clinical and diclofenac reduced-susceptibility (Dc<sup>RS</sup>) <it>S. aureus </it>strains.</p> <p>Methods</p> <p>Transcriptional alterations in response to growth with diclofenac were measured using <it>S. aureus </it>gene expression microarrays and quantitative real-time PCR. Antimicrobial susceptibility was determined by agar diffusion MICs and gradient plate analysis. Ciprofloxacin accumulation was measured by fluorescence spectrophotometry.</p> <p>Results</p> <p>Growth of <it>S. aureus </it>strain COL with 80 μg/ml (0.2 × MIC) of diclofenac resulted in the significant alteration by ≥2-fold of 458 genes. These represented genes encoding proteins for transport and binding, protein and DNA synthesis, and the cell envelope. Notable alterations included the strong down-regulation of antimicrobial efflux pumps including <it>mepRAB </it>and a putative <it>emrAB/qacA</it>-family pump. Diclofenac up-regulated <it>sigB </it>(σ<sup>B</sup>), encoding an alternative sigma factor which has been shown to be important for antimicrobial resistance. <it>Staphylococcus aureus </it>microarray metadatabase (SAMMD) analysis further revealed that 46% of genes differentially-expressed with diclofenac are also σ<sup>B</sup>-regulated. Diclofenac altered <it>S. aureus </it>susceptibility to multiple antibiotics in a strain-dependent manner. Susceptibility increased for ciprofloxacin, ofloxacin and norfloxacin, decreased for oxacillin and vancomycin, and did not change for tetracycline or chloramphenicol. Mutation to Dc<sup>RS </sup>did not affect susceptibility to the above antibiotics. Reduced ciprofloxacin MICs with diclofenac in strain BB255, were not associated with increased drug accumulation.</p> <p>Conclusions</p> <p>The results of this study suggest that diclofenac influences antibiotic susceptibility in <it>S. aureus</it>, in part, by altering the expression of regulatory and structural genes associated with cell wall biosynthesis/turnover and transport.</p
- …