62 research outputs found

    The detrital zircon record of Variscan to post‑Variscan tectonosedimentary and magmatic processes in the Tauern Window (Eastern Alps)

    Get PDF
    Coupled U–Pb and Lu–Hf LA-ICP-MS detrital and igneous zircon data were obtained from metasedimentary sequences (Kaserer Formation, Schmirntal Quartzite, Seidlwinkel Formation, Bündnerschiefer Basin, Riffler Basin) of the western Tauern Window (Eastern Alps). Results show maximum deposition ages between the Late Permian and the Triassic, indicating protracted sedimentation and magmatism between the Late Paleozoic and the Mesozoic. The Lu–Hf fingerprint shows a change from subchondritic to variable subchondritic to suprachondritic compositions at ca. 290 Ma, possibly documenting the transition from Late Paleozoic Variscan post-collisional processes to intracontinental extension. Lithospheric thinning and magmatic underplating may explain the observed Hf isotopic evolution as the result of mixing of crustal and mantellic sources. From a paleogeographical perspective, results confirm that the Tauern Window was situated between Alpine basement units (South Alpine, Austroalpine and External Massifs) and the Bohemian Massif during the Permian–Triassic.Fil: Veselá, P.. Ludwig Maximilians Universitat; AlemaniaFil: Oriolo, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Basei, M. A. S.. Universidade de Sao Paulo; BrasilFil: Lammerer, Bernd. Ludwig Maximilians Universitat; AlemaniaFil: Siegesmund, S.. Universität Göttingen; Alemani

    Antimicrobial modification of PLA scaffolds with ascorbic and fumaric acids via plasma treatment

    Get PDF
    An optimal medical scaffold should be biocompatible and biodegradable and should have adequate mechanical properties and scaffold architecture porosity, a precise three-dimensional shape, and a reasonable manufacturing method. Polylactic acid (PLA) is a natural biodegradable thermoplastic aliphatic polyester that can be fabricated into nanofiber structures through many techniques, and electrospinning is one of the most widely used methods. Medical fiber mat scaffolds have been associated with inflammation and infection and, in some cases, have resulted in tissue degradation. Therefore, surface modification with antimicrobial agents represents a suitable solution if the mechanical properties of the fiber mats are not affected. In this study, the surfaces of electrospun PLA fiber mats were modified with naturally occurring L-ascorbic acid (ASA) or fumaric acid (FA) via a plasma treatment method. It was found that 30 s of radio-frequency (RF) plasma treatment was effective enough for the wettability enhancement and hydroperoxide formation needed for subsequent grafting reactions with antimicrobial agents upon their decomposition. This modification led to changes in the surface properties of the PLA fiber mats, which were analyzed by various spectroscopic and microscopic techniques. FTIR-ATR confirmed the chemical composition changes after the modification process and the surface morphology/topography changes were proven by SEM and AFM. Moreover, nanomechanical changes of prepared PLA fiber mats were investigated by AFM using amplitude modulation-frequency modulation (AM-FM) technique. A significant enhancement in antimicrobial activity of such modified PLA fiber mats against gram-positive Staphylococcus aureus and gram-negative Escherichia coli are demonstrated herein. © 2020 The AuthorsQatar National Research Fund (a member of The Qatar Foundation) [22-076-1-011]; Qatar University Collaborative Grant [QUCG-CAM-20/21-3]; Czech Science FoundationGrant Agency of the Czech Republic [19-16861S

    Activation of Multiple Apoptotic Pathways in Human Nasopharyngeal Carcinoma Cells by the Prenylated Isoflavone, Osajin

    Get PDF
    Osajin is a prenylated isoflavone showing antitumor activity in different tumor cell lines. The underlying mechanism of osajin-induced cancer cell death is not clearly understood. In the present study, the mechanisms of osajin-induced cell death of human nasopharyngeal carcinoma (NPC) cells were explored. Osajin was found to significantly induce apoptosis of NPC cells in a dose- and time-dependent manner. Multiple molecular effects were observed during osajin treatment including a significant loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, enhanced expression of Fas ligand (FasL), suppression of glucose-regulated protein 78 kDa (GRP78), and activation of caspases-9, -8, -4 and -3. In addition, up-regulation of proapoptotic Bax protein and down-regulation of antiapoptotic Bcl-2 protein were also observed. Taken together, osajin induces apoptosis in human NPC cells through multiple apoptotic pathways, including the extrinsic death receptor pathway, and intrinsic pathways relying on mitochondria and endoplasmic reticulum stress. Thus, osajin could be developed as a new effective and chemopreventive compound for human NPC

    Experimental values of the output powers of 633nm He-Ne lasers

    No full text
    • …
    corecore