5,046 research outputs found
COLOR III: a multicentre randomised clinical trial comparing transanal TME versus laparoscopic TME for mid and low rectal cancer
Total mesorectal excision (TME) is an essential component of surgical management of rectal cancer. Both open and laparoscopic TME have been proven to be oncologically safe. However, it remains a challenge to achieve complete TME with clear circumferential resections margin (CRM) with the conventional transabdominal approach, particularly in mid and low rectal tumours. Transanal TME (TaTME) was developed to improve oncological and functional outcomes of patients with mid and low rectal cancer.An international, multicentre, superiority, randomised trial was designed to compare TaTME and conventional laparoscopic TME as the surgical treatment of mid and low rectal carcinomas. The primary endpoint is involved CRM. Secondary endpoints include completeness of mesorectum, residual mesorectum, morbidity and mortality, local recurrence, disease-free and overall survival, percentage of sphincter-saving procedures, functional outcome and quality of life. A Quality Assurance Protocol including centralised MRI review, histopathology re-evaluation, standardisation of surgical techniques, and monitoring and assessment of surgical quality will be conducted.The difference in involvement of CRM between the two treatment strategies is thought to be in favour of the TaTME. TaTME is therefore expected to be superior to laparoscopic TME in terms of oncological outcomes in case of mid and low rectal carcinomas
Exercise and Coronary Atherosclerosis: Observations, Explanations, Relevance, and Clinical Management.
Physical activity and exercise training are effective strategies for reducing the risk of cardiovascular events, but multiple studies have reported an increased prevalence of coronary atherosclerosis, usually measured as coronary artery calcification, among athletes who are middle-aged and older. Our review of the medical literature demonstrates that the prevalence of coronary artery calcification and atherosclerotic plaques, which are strong predictors for future cardiovascular morbidity and mortality, was higher in athletes compared with controls, and was higher in the most active athletes compared with less active athletes. However, analysis of plaque morphology revealed fewer mixed plaques and more often only calcified plaques among athletes, suggesting a more benign composition of atherosclerotic plaques. This review describes the effects of physical activity and exercise training on coronary atherosclerosis in athletes who are middle-aged and older and aims to contribute to the understanding of the potential adverse effects of the highest doses of exercise training on the coronary arteries. For this purpose, we will review the association between exercise and coronary atherosclerosis measured using computed tomography, discuss the potential underlying mechanisms for exercise-induced coronary atherosclerosis, determine the clinical relevance of coronary atherosclerosis in middle-aged athletes and describe strategies for the clinical management of athletes with coronary atherosclerosis to guide physicians in clinical decision making and treatment of athletes with elevated coronary artery calcification scores
Magnetically asymmetric interfaces in a (LaMnO)/(SrMnO) superlattice due to structural asymmetries
Polarized neutron reflectivity measurements of a ferromagnetic
[(LaMnO)/(SrMnO)] superlattice reveal a modulated
magnetic structure with an enhanced magnetization at the interfaces where
LaMnO was deposited on SrMnO (LMO/SMO). However, the opposite
interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The
magnetic asymmetry arises from the difference in lateral structural roughness
of the two interfaces observed via electron microscopy, with strong
ferromagnetism present at the interfaces that are atomically smooth over tens
of nanometers. This result demonstrates that atomic-scale roughness can
destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure
Magnetic Structure in Fe/Sm-Co Exchange Spring Bilayers with Intermixed Interfaces
The depth profile of the intrinsic magnetic properties in an Fe/Sm-Co bilayer
fabricated under nearly optimal spring-magnet conditions was determined by
complementary studies of polarized neutron reflectometry and micromagnetic
simulations. We found that at the Fe/Sm-Co interface the magnetic properties
change gradually at the length scale of 8 nm. In this intermixed interfacial
region, the saturation magnetization and magnetic anisotropy are lower and the
exchange stiffness is higher than values estimated from the model based on a
mixture of Fe and Sm-Co phases. Therefore, the intermixed interface yields
superior exchange coupling between the Fe and Sm-Co layers, but at the cost of
average magnetization.Comment: 16 pages, 6 figures and 1 tabl
Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam
While designed primarily for X-ray imaging applications, the Medipix3 ASIC
can also be used for charged-particle tracking. In this work, results from a
beam test at the CERN SPS with irradiated and non-irradiated sensors are
presented and shown to be in agreement with simulation, demonstrating the
suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.Comment: 16 pages, 13 figure
Surface spin-flop transition in a uniaxial antiferromagnetic Fe/Cr superlattice induced by a magnetic field of arbitrary direction
We studied the transition between the antiferromagnetic and the surface
spin-flop phases of a uniaxial antiferromagnetic [Fe(14 \AA)/Cr(11 \AA] superlattice. For external fields applied parallel to the in-plane easy
axis, the layer-by-layer configuration, calculated in the framework of a
mean-field one-dimensional model, was benchmarked against published polarized
neutron reflectivity data. For an in-plane field applied at an angle with the easy axis, magnetometry shows that the magnetization
vanishes at H=0, then increases slowly with increasing . At a critical value
of , a finite jump in is observed for , while a
smooth increase of is found for . A dramatic
increase in the full width at half maximum of the magnetic susceptibility is
observed for . The phase diagram obtained from
micromagnetic calculations displays a first-order transition to a surface
spin-flop phase for low values, while the transition becomes continuous
for greater than a critical angle, . This is in fair agreement with the experimentally observed results.Comment: 24 pages, 7 figure
Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector
For the HERA upgrade, the ZEUS experiment has designed and installed a high
precision Micro Vertex Detector (MVD) using single sided micro-strip sensors
with capacitive charge division. The sensors have a readout pitch of 120
microns, with five intermediate strips (20 micron strip pitch). An extensive
test program has been carried out at the DESY-II testbeam facility. In this
paper we describe the setup developed to test the ZEUS MVD sensors and the
results obtained on both irradiated and non-irradiated single sided micro-strip
detectors with rectangular and trapezoidal geometries. The performances of the
sensors coupled to the readout electronics (HELIX chip, version 2.2) have been
studied in detail, achieving a good description by a Monte Carlo simulation.
Measurements of the position resolution as a function of the angle of incidence
are presented, focusing in particular on the comparison between standard and
newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM
Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers
In antiferromagnetically coupled superlattices grown on (001) faces of cubic
substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or
Fe/Cr, the magnetic states evolve under competing influence of bilinear and
biquadratic exchange interactions, surface-enhanced four-fold in-plane
anisotropy, and specific finite-size effects. Using phenomenological
(micromagnetic) theory, a comprehensive survey of the magnetic states and
reorientation transitions has been carried out for multilayer systems with even
number of ferromagnetic sub-layers and magnetizations in the plane. In
two-layer systems (N=2) the phase diagrams in dependence on components of the
applied field in the plane include ``swallow-tail'' type regions of
(metastable) multistate co-existence and a number of continuous and
discontinuous reorientation transitions induced by radial and transversal
components of the applied field. In multilayers (N \ge 4) noncollinear states
are spatially inhomogeneous with magnetization varying across the multilayer
stack. For weak four-fold anisotropy the magnetic states under influence of an
applied field evolve by a complex continuous reorientation into the saturated
state. At higher anisotropy they transform into various inhomogeneous and
asymmetric structures. The discontinuous transitions between the magnetic
states in these two-layers and multilayers are characterized by broad ranges of
multi-phase coexistence of the (metastable) states and give rise to specific
transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio
- …
