340 research outputs found

    Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond

    Full text link
    We investigate spin-dependent decay and intersystem crossing in the optical cycle of single negatively-charged nitrogen-vacancy (NV) centres in diamond. We use spin control and pulsed optical excitation to extract both the spin-resolved lifetimes of the excited states and the degree of optically-induced spin polarization. By optically exciting the centre with a series of picosecond pulses, we determine the spin-flip probabilities per optical cycle, as well as the spin-dependent probability for intersystem crossing. This information, together with the indepedently measured decay rate of singlet population provides a full description of spin dynamics in the optical cycle of NV centres. The temperature dependence of the singlet population decay rate provides information on the number of singlet states involved in the optical cycle.Comment: 11 pages, 5 figure

    Control and Local Measurement of the Spin Chemical Potential in a Magnetic Insulator

    Full text link
    The spin chemical potential characterizes the tendency of spins to diffuse. Probing the spin chemical potential could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here, we introduce single-spin magnetometry as a generic platform for non-perturbative, nanoscale characterization of spin chemical potentials. We use this platform to investigate magnons in a magnetic insulator, surprisingly finding that the magnon chemical potential can be efficiently controlled by driving the system's ferromagnetic resonance. We introduce a symmetry-based two-fluid theory describing the underlying magnon processes, realize the first experimental determination of the local thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled spin injection. Our results open the way for nanoscale control and imaging of spin transport in mesoscopic spin systems.Comment: 18 pages, 4 figure

    A transgenic zebrafish model for thein vivostudy of the blood and choroid plexus brain barriers usingclaudin 5

    Get PDF
    The central nervous system (CNS) has specific barriers that protect the brain from potential threats and tightly regulate molecular transport. Despite the critical functions of the CNS barriers, the mechanisms underlying their development and function are not well understood, and there are very limited experimental models for their study. Claudin 5 is a tight junction protein required for blood brain barrier (BBB) and, probably, choroid plexus (CP) structure and function in vertebrates. Here, we show that the geneclaudin 5ais the zebrafish orthologue with high fidelity expression, in the BBB and CP barriers, that demonstrates the conservation of the BBB and CP between humans and zebrafish. Expression ofclaudin 5acorrelates with developmental tightening of the BBB and is restricted to a subset of the brain vasculature clearly delineating the BBB. We show thatclaudin 5a-expressing cells of the CP are ciliated ependymal cells that drive fluid flow in the brain ventricles. Finally, we find that CP development precedes BBB development and thatclaudin 5aexpression occurs simultaneously with angiogenesis. Thus, our novel transgenic zebrafish represents an ideal model to study CNS barrier development and function, critical in understanding the mechanisms underlying CNS barrier function in health and disease
    corecore