45 research outputs found
Vortex oscillations induced by a spin-polarized current in a magnetic nanopillar: Evidence for a failure of the Thiele approach
We investigate the vortex excitations induced by a spin-polarized current in
a magnetic nanopillar by means of micromagnetic simulations and analytical
calculations. Damped motion, stationary vortex rotation and the switching of
the vortex core are successively observed for increasing values of the current.
We demonstrate that even for small amplitude of the vortex motion, the
analytical description based the classical Thiele approach can yield
quantitatively and qualitatively unsound results. We suggest and validate a new
analytical technique based on the calculation of the energy dissipation
Critical velocity for the vortex core reversal in perpendicular bias magnetic field
For a circular magnetic nanodot in a vortex ground state we study how the
critical velocity of the vortex core reversal depends on the magnitude
of a bias magnetic field applied perpendicularly to the dot plane. We find
that, similarly to the case = 0, the critical velocity does not depend on
the size of the dot. The critical velocity is dramatically reduced when the
negative (i.e. opposite to the vortex core direction) bias field approaches the
value, at which a \emph{static} core reversal takes place. A simple analytical
model shows good agreement with our numerical result.Comment: 4 pages, 2 figure
Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions
Spin polarized current can excite the magnetization of a ferromagnet through
the transfer of spin angular momentum to the local spin system. This pure
spin-related transport phenomena leads to alluring possibilities for the
achievement of a nanometer scale, CMOS compatible and tunable microwave
generator operating at low bias for future wireless communications. Microwave
emission generated by the persitent motion of magnetic vortices induced by spin
transfer effect seems to be a unique manner to reach appropriate spectral
linewidth. However, in metallic systems, where such vortex oscillations have
been observed, the resulting microwave power is much too small. Here we present
experimental evidences of spin-transfer induced core vortex precessions in
MgO-based magnetic tunnel junctions with similar good spectral quality but an
emitted power at least one order of magnitude stronger. More importantly,
unlike to others spin transfer excitations, the thorough comparison between
experimental results and models provide a clear textbook illustration of the
mechanisms of vortex precessions induced by spin transfer
High domain wall velocities due to spin currents perpendicular to the plane
We consider long and narrow spin valves composed of a first magnetic layer
with a single domain wall (DW), a normal metal spacer and a second magnetic
layer that is a planar or a perpendicular polarizer. For these structures, we
study numerically DW dynamics taking into account the spin torques due to the
perpendicular spin currents. We obtain high DW velocities: 50 m/s for planar
polarizer and 640 m/s for perpendicular polarizer for J = 5*10^6 A/cm^2. These
values are much larger than those predicted and observed for DW motion due to
the in-plane spin currents. The ratio of the magnitudes of the torques, which
generate the DW motion in the respective cases, is responsible for these large
differences.Comment: 10 pages, 2 figure
Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme
Spin-polarised radio-frequency currents, whose frequency is equal to that of
the gyrotropic mode, will cause an excitation of the core of a magnetic vortex
confined in a magnetic tunnel junction. When the excitation radius of the
vortex core is greater than that of the junction radius, vortex core expulsion
is observed, leading to a large change in resistance, as the layer enters a
predominantly uniform magnetisation state. Unlike the conventional spin-torque
diode effect, this highly tunable resonant effect will generate a voltage which
does not decrease as a function of rf power, and has the potential to form the
basis of a new generation of tunable nanoscale radio-frequency detectors
Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities
Shifting electrically a magnetic domain wall (DW) by the spin transfer
mechanism is one of the future ways foreseen for the switching of spintronic
memories or registers. The classical geometries where the current is injected
in the plane of the magnetic layers suffer from a poor efficiency of the
intrinsic torques acting on the DWs. A way to circumvent this problem is to use
vertical current injection. In that case, theoretical calculations attribute
the microscopic origin of DW displacements to the out-of-plane (field-like)
spin transfer torque. Here we report experiments in which we controllably
displace a DW in the planar electrode of a magnetic tunnel junction by vertical
current injection. Our measurements confirm the major role of the out-of-plane
spin torque for DW motion, and allow to quantify this term precisely. The
involved current densities are about 100 times smaller than the one commonly
observed with in-plane currents. Step by step resistance switching of the
magnetic tunnel junction opens a new way for the realization of spintronic
memristive devices
Magnetic stray fields in nanoscale magnetic tunnel junctions
The magnetic stray field is an unavoidable consequence of ferromagnetic devices and sensors leading to a natural asymmetry in magnetic properties. Such asymmetry is particularly undesirable for magnetic random access memory applications where the free layer can exhibit bias. Using atomistic dipole-dipole calculations we numerically simulate the stray magnetic field emanating from the magnetic layers of a magnetic memory device with different geometries. We find that edge effects dominate the overall stray magnetic field in patterned devices and that a conventional synthetic antiferromagnet structure is only partially able to compensate the field at the free layer position. A granular reference layer is seen to provide near-field flux closure while additional patterning defects add significant complexity to the stray field in nanoscale devices. Finally we find that the stray field from a nanoscale antiferromagnet is surprisingly non-zero arising from the imperfect cancellation of magnetic sublattices due to edge defects. Our findings provide an outline of the role of different layer structures and defects in the effective stray magnetic field in nanoscale magnetic random access memory devices and atomistic calculations provide a useful tools to study the stray field effects arising from a wide range of defects