806 research outputs found
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Long-term efficacy and safety of eculizumab in Japanese patients with generalized myasthenia gravis : a subgroup analysis of the REGAIN open-label extension study
The terminal complement inhibitor eculizumab was shown to improve myasthenia gravis-related symptoms in the 26-week, phase 3, randomized, double-blind, placebo-controlled REGAIN study (NCT01997229). In this 52-week sub-analysis of the open-label extension of REGAIN (NCT02301624), eculizumab's efficacy and safety were assessed in 11 Japanese and 88 Caucasian patients with anti-acetylcholine receptor antibody-positive refractory generalized myasthenia gravis. For patients who had received placebo during REGAIN, treatment with open-label eculizumab resulted in generally similar outcomes in the Japanese and Caucasian populations. Rapid improvements were maintained for 52 weeks, assessed by change in score from open-label extension baseline to week 52 (mean [standard error]) using the following scales (in Japanese and Caucasian patients, respectively): Myasthenia Gravis Activities of Daily Living (-2.4 [1.34] and - 3.3 [0.651); Quantitative Myasthenia Gravis (-2.9 [1.98] and - 4.3 [0.79]); Myasthenia Gravis Composite (-4.5 [2.63] and - 4.9 [1.19]); and Myasthenia Gravis Quality of Life 15-item questionnaire (-8.6 [5.68) and - 6.5 [1.93]). Overall, the safety of eculizumab was consistent with its known safety profile. In this interim sub-analysis, the efficacy and safety of eculizumab in Japanese and Caucasian patients were generally similar, and consistent with the overall REGAIN population
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Casimir effect between anti-de Sitter braneworlds
We calculate the one-loop effective action of a scalar field with general
mass and coupling to the curvature in the detuned Randall-Sundrum brane world
scenario, where the four-dimensional branes are anti-de Sitter. We make use of
conformal transformations to map the problem to one on the direct product of
the hyperbolic space H^4 and the interval. We also include the cocycle function
for this transformation. This Casimir potential is shown to give a sizable
correction to the classical radion potential for small values of brane
separation.Comment: 14 pages, 3 figures, revtex. Typos corrected and references added.
Minor mistakes in Eq. 48 and Eq. A10 correcte
Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.
[Objectives] To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). [Methods] EL4 tumour-bearing C57BL/J mice received 5-bromo-2′-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a [10]B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. [Results] Following γ-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a[10]B-carrier, especially L-para-boronophenylalanine-[10]B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. [Conclusion] The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the [10]B-carrier used in the BNCR
Excitation of Kaluza-Klein gravitational mode
We investigate excitation of Kaluza-Klein modes due to the parametric
resonance caused by oscillation of radius of compactification. We consider a
gravitational perturbation around a D-dimensional spacetime, which we
compactify on a (D-4)-sphere to obtain a 4-dimensional theory. The perturbation
includes the so-called Kaluza-Klein modes, which are massive in 4-dimension, as
well as zero modes, which is massless in 4-dimension. These modes appear as
scalar, vector and second-rank symmetric tensor fields in the 4-dimensional
theory. Since Kaluza-Klein modes are troublesome in cosmology, quanta of these
Kaluza-Klein modes should not be excited abundantly. However, if radius of
compactification oscillates, then masses of Kaluza-Klein modes also oscillate
and, thus, parametric resonance of Kaluza-Klein modes may occur to excite their
quanta. In this paper we consider part of Kaluza-Klein modes which correspond
to massive scalar fields in 4-dimension and investigate whether quanta of these
modes are excited or not in the so called narrow resonance regime of the
parametric resonance. We conclude that at least in the narrow resonance regime
quanta of these modes are not excited so catastrophically.Comment: 15 pages LaTeX, submitted to Phys.Rev.
- …
