38 research outputs found

    Modeling of Intermediate Phase Growth

    Get PDF
    We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper

    Modeling of intermediate phase growth

    Full text link

    Early stages of soldering reactions

    Get PDF
    An experiment on the early stages of intermetallic compound layer growth during soldering and its theoretical analysis were conducted with the intent to study the controlling factors of the process. An experimental technique based on fast dipping and pulling of a copper coupon in liquid solder followed by optical microscopy allowed the authors to study the temporal behavior of the sample on a single micrograph. The technique should be of value for different areas of metallurgy because many experiments on crystallization may be described as the growth of a layer of intermediate phase. Comparison of the experimental results with the theoretical calculations allowed one to identify the kinetics of dissolution as the rate-controlling mechanism on the early stages and measure the kinetic coefficient of dissolution. A popular model of intermetallic compound layer structure coarsening is discussed

    Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids

    Get PDF
    We determine the speed of a crystallisation (or more generally, a solidification) front as it advances into the uniform liquid phase after the system has been quenched into the crystalline region of the phase diagram. We calculate the front speed by assuming a dynamical density functional theory model for the system and applying a marginal stability criterion. Our results also apply to phase field crystal (PFC) models of solidification. As the solidification front advances into the unstable liquid phase, the density profile behind the advancing front develops density modulations and the wavelength of these modulations is a dynamically chosen quantity. For shallow quenches, the selected wavelength is precisely that of the crystalline phase and so well-ordered crystalline states are formed. However, when the system is deeply quenched, we find that this wavelength can be quite different from that of the crystal, so that the solidification front naturally generates disorder in the system. Significant rearrangement and ageing must subsequently occur for the system to form the regular well-ordered crystal that corresponds to the free energy minimum. Additional disorder is introduced whenever a front develops from random initial conditions. We illustrate these findings with results obtained from the PFC.Comment: 14 pages, 7 figure

    Thermal Effects of Interfacial Dynamics

    No full text
    Abstract. Dynamical Ginzburg-Landau theory is applied to the study of thermal effects of motion of interfaces that appear after different phase transitions. These effects stem from the existence of the surface internal energy, entropy and temperature gradients in the interfacial transition region. Evolution equations for the interfacial motion are derived. For the experimental verification of the thermal effects the expression is derived for the amplitude of temperature waves during continuous ordering

    Nonisothermal relaxation in a nonlocal medium

    Get PDF
    A study is made of the thermodynamics of a non-local medium whose evolution is governed not only by the temperature and pressure, but also by the field of a relaxation parameter. For solid-state materials which undergo a phase transition, such a relaxation parameter is the order parameter. Heat transport equations are derived together with a thermodynamic inequality which must be satisfied during relaxation. The motion of an interphase boundary during a first-order phase transition is investigated. It is shown that, if the width of the boundary exceeds a critical value, there are steady-state conditions under which the new phase formed in an exothermal transition may be at a temperature above the equilibrium temperature
    corecore