The phonon states density plotted in Fig. 3 splits
into several bands. Such a situation is realistic. In
some cases the phonon bands can intersect. Then,
the solution of the problem of determination of the
phonon spectrum from calorimetric data may become
more complex. This case requires a separate anal-
ysis.

We shall conclude by stating that the density of
the phonon states can sometimes be determined in
the case of crystals of the cluster type with zero-
dimensional anisotropy.
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A study is made of the thermodynamics of a nonlocal medium whose evolution is governed not only by the
temperature and pressure, but also by the field of a relaxation parameter. For solid-state materials which
undergo a phase transition, such a relaxation parameter is the order parameter. Heat transport equations are
derived together with a thermodynamic inequality which must be satisfied during relaxation. The motion of
an interphase boundary during a first-order phase transition is investigated. It is shown that, if the width of
the boundary exceeds a critical value, there are steady-state conditions under which the new phase formed in
an exothermal transition may be at a temperature above the equilibrium temperature.

Continuum models have been widely used to de-
scribe the evolution of nonequilibrium condensed sys-
tems. In such models, relaxation is regarded as the
evolution of a spatially inhomogeneous field of some
parameter characterizing the deviation of the system
from equilibrium. In particular, such a method may
be used to describe the evolution of a phase transi-
tion from a metastable or unstable state to a stable
state and the relaxation parameter is then repre-
sented by the transition or order parameter. Changes
of the transition parameter at each point are accom-
panied by the release of heat which then affects the
rate of such evolution. The analysis of the relaxa-
tion process is thus related to the problem of de-
scribing heat release in such an inhomogeneous non-
equilibrium medium. Attempts tb solve this problem
have been based on heuristic ideas and are unsatis-
factory.!,?

We shall address this problem using a consistent
thermodynamic approach which takes account of the
nonlocal properties of the medium, i.e., we shall as-
sume that the thermodynamic functions at each point
depend not only on the value of the relaxation param-
eter at this point, but also on the components of the
gradient of this parameter. Compared with the
Mandel'shtam=Leontovich—Fastov relaxation theory
(see Refs. 3-5), this represents a refinement neces-
sary to describe interphase boundaries where gradi-
ents of the transition parameter are particularly large.

The probilem under study is especially topical for
magnetic and superconducting first-order phase
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transitions and also for structural phase transitions
with a wide boundary. The results could be also
used to discuss the macroscopic dynamics of solid-

" state chemical reactions.®

1. THERMODYNAMIC RELATIONS FOR A NONLOCAL
MEDIUM

We shall consider a noneguilibrium thermodynamic
system whose state is described at each moment of
time not only by the temperature T(r, t) and pres-
sure P(r, t) fields, but also by the field of a relaxa-
tion parameter £ (r, ). In a nonequilibrium state, the
thermodynamic potential ¢ per unit volume of the nonlocal
medium depends at each point r on the values of T,
P, and £, and onthe components of various deriva-
tives of ¢ with respect to the coordinates 3£/8x;.
The thermodynamic potential of the system as a whole
can then be written as a functional

(7, P, gy = [ gaor. 1)
The integration is over the whole volume occupied by
the system which is assumed to be constant.

For given temperature and pressure distributions,
the thermodynamic potential in an equilibrium state
should assume a minimum value with respect to the
spatial distribution of the relaxation parameter, i.e.,

B .

7 =0 for E=1. Pom, (2)
where &§¢/68£ is the variational derivative of the func-
tional (1).
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We shall determine the change in the thermody-
namic potential ¢ at a point r, induced by a small
continuous increase &£ (r, £) which is nonzero only
in the vicinity of the point r. According to the
definition of the wvariational derivative (see Ref. 7),
such as increase is given by .

B

by =7 88,

(3)

with an accuracy up to small terms of higher order
than $¢,

If the temperature, pressure, and relaxation
barameter vary simultaneously, then

@
dp=—sdT 4 pdP - —zs—dﬁ,

(4)
where s = —(aqb/aT)p’ g is the entropy per unit volume
and v = (a:bfaP)T, g is the relative change of the unit
volume due to comppgfgon by dP.

According to the first law of thermodynamics, the
amount of heat dq received by a unit volume of the
system is given by

dg =de + Pdo,

(%)
where e is the energy per unit volume of the system
which is related to the thermodynamic potential by
the usual expression

?=B—TS+PU. (6)

Substituting Eq. (8) in Eq. (4) and using Egq. (5),
we obtain an expression for the entropy change

5 :
fds:dq—a_?'dE- (7
It follows from the second law of thermodynamics
that
ds > dg/T. (8)

Comparing Egs. (7) and (8), we obtain a condition
which should be satisfied by the variation of the re-
laxation parameter at each point: .

L]
= df <0,
83

(9)
where equality is possible only under the condition
(2). The simplest equation describing the evolution
of the parameter &(r, t) satisfying these requirements
has the form

dt g

o =T (10)
where the coefficienty > 0 determines the character-
istic relaxation time of the parameter &(r, t). This
equation was used in Ref. & and it represents a gen-
eralization of the Mandel'shtam—Leontovich relaxation
equation?® to a nonlocal case.

Combining Egs. (4) and (7}, we obtain an equa-
tion for the enthalpy change per unit volume w =
¢+ Ts,

dw =dq 4 vdP. (]_]_)

We shall now derive an equation of heat trans-
port in a system where P = const and heat exchange

is governed by heat conduction, i.e.,
dg =V (AV1) de, (12)

where A is the thermal conductivity. We shall in-
troduce a specific heat per unit volume. Cp= ( aw/

3T)p, ¢ and total enthalpy of the system W — [wdsr.

By analogy with Eq. (4), we obtain the following ex-
pression for the enthalpy change:
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W
dw=CPdT+(—55—)TdE- (13)
Using Egs. (11)-(13), we obtain an equation for heat
transport in an immobile medium:

7
cp%—=V(xvr)+o(r. t), (14)
where the density of instantaneous heat release in the
medium is given by

W\ oE

80 9F
2, t)=-ﬁ("¥ Tt

o T

35 oE
e, (15)

where S:Ksa‘.”r is the total entropy of the system.

The heat source Q(r, t) consists of a dissipation
term which is always positive because of Eg. (9) and
of an entropy contribution which may be either posi-
tiver or negative, depending on the direction of the
process. The system (14) and (15) represents the
fulfillment of our task to derive an equation govern-
ing heat transport in a nonequilibrium nonlocal medi-
um. This equation can then be generalized to a mov
ing medium and to solid-state materials with pressure
or stress varying from point to point using standard
procedures.

72. CONDITION ON THE INTERPHASE BOUNDARY

(GENERALIZED GIBBS—THOMSON EQUATION)

As an example, we shall consider a two-phase
system formed during a first-order phase transition.
The thermodynamic potential of such a system can be
the Ginzburg-Landau functional® and the Cahn-Hil-
liard functionall®, i.e.,

#=w (1) + 3% (T, &) 45 (Ve (18)
where « >0. Homogepeous solutions of Egq. (2) at
& constant temperature T, i.e. , the solutions of the
equation

AL

B o, (1mn
describe metastable £,, stable £2, and unstable ¢* states
of the system. Here, ¢,(T) is the thermodynamic poten-
tial of the phase ¢,, i.e., 8¢(T, &,) =0. At the
equilibrium temperature T,, we have o(Tq, ;)=

o(Tos &,), ie.,

8% Ty, £2) =Q. (18)

Equation (10) describing the evolution of a sys-
tem with the thermodynamic potential defined by Eg.
(16) is given by

1 a2

1A
———=—L("E£—{-1VEE.

1 at (19)

Isothermal solutions of this equation are known. 8,11
In the one-dimensional case at T = Ty, the solution
varying from £, to &, is represented by a solitary

~wave of half-width

b~ | — & | Vaidg (T, 6.

(20)

We can use this result and seek the solution of Eq.
(19) for an arbitrary temperature distribution in the
form of a function

f=t(u (21)

of a scalar field
(22)

u=1U(r, t).

(o)
The velocity Vh(r, t) of motion -a%eﬁfg-*the surface

U(r, t) = const is given by
(23)
U
- FVl VU |=0.
, Vn
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vector n normal to this surface, which is

unit
::}smed from the state £, toward the state £,
gatisfies the relation??,?

S (24)

where k, and k, are the principal curvatures of the

gurface U = const.

we shall choose the scalar field (22) so that it
satisfies the eikonal equation

(vUp=1- (25)
solutions of Eq. (25) form a set of equidistant sur-
faces U(’r, t) = const that are parallel to some chosen
surface which will be denoted by U= 0. We shall
choose this surface to satisfy £(0) = (£, +£,)/2 and
call it the interphase surface. The orthogonal trajec-
tories are straight lines and the distance from a
point (r, t) to the interphase surface is equal to u
(see Ref. 14). The value of Vn is independent of
the eikonal u and the principal curvatures 1{1,.2
satisfy the relation

ki=1{(R;0 4 u), (26)
where i = 1, 2; Rj, are the principal radii of curva-
ture of the interphase surface.

Using the Egs. (21)-(25), we can transform
Eq. (19) to the form

voode  adp o dat
. —=I(du2+2KE '

— 7y du e (27)

where K = (k; + k,)/2 is the average curvature of
the surface U = const.

We shall multiply all the terms of this equation
by dg/du and integrate the equation over the inter-
val (u,, u,), where £, = g(u,) and ¢, = £(u,).

If the characteristic length of the temperature field
M CpVy is much greater than the width of the transi-
tion region 26, i.e., if the Peclet number of the
system satisfies

Pe=V,Cpbfi <1, (28)
then

e dg (29)

S—ﬁE-—" T du == —2A¢ (T, §)e

oy

We shall assume that the coefficients y and « depend
only weakly on temperature and are independent of
the relaxation parameter £. We obtain

du
B L d g

" 2
ammr~7) o (5) w=0,

n, Hy

(30)

since (dg/du) =0 for £= g, and £ = E,. If the
principal radii of curvature are much greater than
the width of the transition region 25, we obtain from
Eg. (26)

(o) () som (g2

where K, is the average curvature of the interphase
surface and

n.l dE 2

c=5 v(a‘*u—) du.

We thus obtain from Egs. (27)-(31) the following
condition for the boundary (i.e., transition region))

whose width is small compared with the thermal
length:

(31)

(32)
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o Veeb 20K0+ 3¢ (7, 5) =0, (33)
In equilibrium, i.e., for Vi = 0, Eq. (33) reduces to
the Gibbs—Thomson equation which relates the phase
equilibrium temperature of phases separated by a
curved surface to the curvature of this surface.

We shall now evaluate the change of the thermo-
dynamic potential of the system unrelated to a change
in temperature. Using Eqgs. (1), (3), (16), and (29)-
(32), we obtain

e 2 )% 4 T ) "
dd =di —:)?-7 Ak -r-ft_d r=23z (T, E2)dt | V,dQ 4 «dt 2K,V du,
@

SR

(34)

where the integration is over the whole interphased
surface (U =0). The first term is proportional to

the total volume of the region-ané-is modified during a
time dt and the second to the change inthe area of

interphase surface during the same time interval dt

(see Ref. 42). It can be seen from Eq. (34) that o
is the surface thermodynamic potential of a nonequi-
librium nonisothermal system.

The density of instantaneous heat release (15)
for the thermodynamic potential (16) and a relaxation
barameter £('r, t) satisfying Egs. (21)-(25) has the
form

A dx d2z dz\7 dE
o=[5F (-1 ET)(W'*' 2K ) Ve ge s

where Aw(T, £) = 8¢=T(34¢/3T); is the difference
enthalpies of an arbitrary homogéneous state of the
system and of the state for which £= £, at the same
temperature T. We shall integrate this expression
in the interval (u,, u,) assuming that the width

of the transition region is small compared with the
thermal length and with the radius of curvature of.
the interphase surface. Using Egs. ©29)-(32), we
then obtain the following expression for the total
power of the heat released in the system:

2 ds
Q:Vn[L(T)—QKU(U——Td—TT)J, (35)
where
L(Ty =T (T, ) (0T — 33 (T, &) (36)

is the latent heat of the transition at a temperature
T. The second term in Eq. (35) is the heat re-
leased in the system due to changes in the area of
the interphase boundaries and is the only source of
heat for recrystallization or growth of antiphase do-
mains. ?  The boundary condition (33) and the ex-
pression (33) for the power of released heat can be
used to solve the boundary-value problems for the
generalized Stefan problem. !%:1¢  Classical analysis
of the boundary of an infinitesimal thickness corre-

which

——

sponds to the limit « -+ 0 for vk = const, K-a?(’rn)‘g"')m:m‘st.

3. STEADY-STATE MOTION OF AN INTERPHASE
BOUNDARY

We shall consider stationary one-dimensional solu-
tions of the system of equations (14) and (19) with-
out the restriction (28) representing the requirement
that the Peclet number is small. We shall express
the solutionof the system (14) and (19) in the form
of a wave moving in the positive direction of the x
axis with respect to the medium with a constant

velocity V 20 so that all the functions depend only enkonaf

on the -external-(22) which now assumes the form u:
¥=Vt and varies within the limits — » <u <+=. We
shall further replace Eq. (14) by the equivalent
equation (11). We shall introduce the enthalpy
w.(T) =(¢,~Td¢,/dT) of the homogeneous state £,.
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varwdton
In the case « = const, we can write the eerreection—

to the enthalpy w of a unit volume for an arbitrary
state in the form

dw = dw, 4 ddw — +V22d3. (37)

We thus find from Eq. (11), (19), and (37) that
the distributions of temperature T(u) and of the re-
laxation parameter £(u) in a system of coordinates
moving with the wave satisfy the system of equa-

tions
1 d 7 dr diwy dAw . 422 d=
T‘a;(*ﬁ)+ﬁ+ T tard =0 (38)
vagome odn ’
T du TR Ut T (39)

Equation (39) is identical with Egq. (27) since the
surfaces U = const for a one-dimensional system -are
planes, i.e., ky .= 0.

We shall consider a thermodynamic system with a
positive latent heat at arbitrary temperatures in the
vicinity of the phase equilibrium temperature T,.
Assuming that the original homogeneous phase &,
far from the transition region for u- +« is at a
temperature T, such that A¢(T,, £,) <0, we find
from Egs. (18) and (36) that T, < T,, i.e, this
phase is supercooled. The system of eguations (38)
and (39) describes the rate and conditions for which
the system undergoes a steady-state transition to a
new state (T,, £&,).

Using the procedure applied to Eq. (27), we
again multiply all the terms of Eq. (39) by dg/du
and integrate them with respect to u over the inter-
val ( —=, +=). The expression in Eq. (30) is iden-
tically equal to zero for k= const. Using the equal-
ity da¢=(2ad/3E)pd £+ (34d/ 3T )edT, we obtain an
equation which determines the velocity V of motion
of a nonisothermal stationary wave

[=+]
1 0de\ T

Az (Ts, &)V j. T(j—i)gdu—l— S (W—)EdezO. (40)

In the limit of an infinitesimally thin boundary and
for an isothermal transition region, the last term

in Eq. (40) vanishes and the velocity is proportional
to the discontinuity of the thermodynamic potential
at the boundary taken with opposite sign (see Refs.
8 and 11), i.e., such boundaries may undergo
steady-state motion (V > 0) only if a¢(T,, £,) <0
(T,<T,).*" Considering nonisothermal transition
regions, we find thatjthe system (38) and (39) may
have solutions(_for large values of @such that a¢(T,,
£;) 20 for V. >0. In fact, Eq. (38) can be inte-
grated analytically. Its first integral

) . dr % fdE N2
wy (T) 4 dw (T, &)—{—-L—-ﬂuj(du) == coust

(41)

expresses the law of conservation of the enthalpy be-
tween homogeneous states of the system far from the
boundary

wy (7)) = w, (Fp) — L (Te) )
and determines the temperature T, of the new phase
£,. Since L(T) >0, we find that T, > T, and, there-
fore, dT/du <0. Moreover, it follows from Eq. (38)

that the inequality 8a(T, £,)/3T > 0 is satisfied near
T = T,. It follows that the last term in Eq. (40) is

such that¥Eq.

(39) has a stationary solutionxfor a¢(T,, £,)=20
With V>0 2ven ’
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’

t.e.

Wfor T, =T,. We can write a¢ in
the form

'r-‘u
dp=de+7-f (7, 8), (42)

where 8¢, = 4¢(T,, £), and L, =L(T,), i.e., f(T,,
£)=f(T, £,)=0and 3f(T,, £,)/3T =1. It follows
that 8f(T,, £)/38T is positive in some neighborhood
of £= £, and af(T,, £,)/8T = 0. Let 32f(T,, £)/
d3Tet> 0 be satisfied for all ¢ such that g, < £ < g,
For T,= T, and x> «x™+ 0, we have V- 0+ 0 and
the function g(u) approaches its equilibrium form
Ee(u) for which [see Egs. (39) and (42)]

* dEe 2

'_2‘( du ) = %0
Since the variation of temperature over the length of
the transition region is small for V+ 0+ 0, we have
w1 (T) = w (T,;) and we find from Egs. (41)-(43)
that the temperature gradient in the transition re-
gion is given by the following expression with an
accuracy up to terms of the order of V2:

a7 V&[i _

du — T 7 &

(43)

A (T,

ar :):\

Equations (40), (43), and (44) then yield the follow-
ing equation which determines the critical value «*

. .
j‘ 5\ CI R PRI
Wy — JaT B ol
2 — Vig, di = — dz
~ To k V‘J‘;“

Liye*
£y i

(44)

(43)

We shall now formulate the main results of this
section and discuss whether they could be verified
experimentally. The existing them{e of the dis-
placement of interphase boundaries aSsume that the
boundary can always be regarded as isothermal and
its velocity is given by

V= p(Ta—Ty), (48)
where T7 is a temperature ascribed to the boundary
and u is the growth coefficient.®s 1,17 This implies
immediately that the growing phase cannot have tem-
perature higher than T,.

Our investigation of steady-state adiabatic mo-
tion of the boundary indicates that this conclusion’
holds only for boundaries whose half-width § is
smaller than a critical length &é*. It is easy to see
from Egs. (20) and (45) that this critical length is
given by

47)
where the numerical coefficient A is of the order of
unity and is governed by the actual form of the

potential (42). Equations (32), (33),and (36) then
imply that p in Egs. (46) and (47) is given by

bkt

|
|
. g !
negative and, therefore, positive values of V are pos- Y /
sible even for A¢(T >0, i.e., for >T,.
o(To, £5) 20, » for T, 2T, IG. 1. Dependences of the enthalpy w and the thermodynamic poten-
We shall find a critical value «*

tial ¢ of the initial (1) and final (2) states of the system on
temperature T.
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1%Ly

p=aT,

The shaded region in Fig. 1 corresponds to steady-
state phase transitions that are allowed for bound-
aries with 6 < 6%, For § > &* and under adiabatic
conditions, steady-state transitions can take place
(indicated by arrows in Fig. 1) for which T,> T,,
i.e., the superheated phase may grow. It should
be emphasized that the value of the Peclet number
is irrelevant for this condition and it depends only
on the thermal parameters and the main character-
istics of the phase transition.

The critical length (47) is expressed in terms
of measurable quantities. For example, the crystal-
lization of white' phosphorus was reliably investigated*®
and it was found that this quantity amounts to 5-1078
m, which is clearly much greater than the width of the
crystal—melt boundary. Unfortunately, data on the
transport coefficients governing the evolution of
phase transitions with wide interphase boundaries
(superconductor—normal metal and magnetic transitions)
are not available. The effects in question could be
quite considerable for such transitions.
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Thermodynamic properties of thin films in the vicinity of a first-

order phase transition
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The Landau~-Ginzburg model and the mean-field approximation are used to study thermodynamic properties
of thin metal films in the vicinity of a first-order phase transition resembling a continuous transition. The size
dependences of the equilibrium transition temperature, surface energy density, and entropy are analyzed
numerically and compared with available experimental data. It is shown that the present method provides a
satisfactory description of the physical systems under study (continuous and island films). The limits of
stability of metastable states are also determined within this model.

Thin films of various materials exhibit' a number
of unique properties and are increasingly being used
in modern engineering and technology. Extensive
research into properties of first-order phase transi-
tions in thin metal films is now being undertaken. Un-
til recently, this research has been carried out main-
ly experimentally. ! It was found that the size ef-
fects lead to shifts of phase transition and polymor-
phic transformation points and influence the range of
stability of the metastable phase for liquid-crystal
transitions 2~ * and change the profile of the hystere-
sis curves. In particular, it was found that the
melting point decreases monotonically when the film
thickness is reduced and a sample changes gradually
from a bulk material to a thin film (provided such a
material is reasonably pure). ! It has also been
demonstrated that the surface energy is reduced in
the transition from a bulk sample to a thin film. 5 It
was shown in Ref. 6 that a liquid phase (water) can
exist in the pores of a wetting agent at temperature
much lower than the melting point for the bulk phase
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and the latent heat of the transition is reduced for
thin films.

Thermodynamic properties of a finite system dur-
ing a first-order phase transition were first studied
theoretically in Refs. 8 and 7. The Landau-Ginz-
burg model was used in Ref. 7 to obtain the size de-
pendence of a shift of the phase equilibrium point of
a film. The distribution of the order parameter
across a film thickness was studied in Ref. 8. How-
ever, many important problems remain unresolved.
Among them, we could mention general understand-
ing of the size dependences of the surface energy,
latent heat of a transition, etc. and also the explana-
tion of changes in the temperature intervals corre-
sponding to the existence of metastable phases (in
particular, supercooled liquid phase) and the limits
of existence of such phases. All these problems
have very important applications (for example, in ad-
hesion of thin layers of unlike materials).

It is our aim to study the changes in thermody-
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