35 research outputs found

    Cancer stem cell biomarkers predictive of radiotherapy response in rectal cancer: A systematic review

    Get PDF
    Background: Rectal cancer (RC) is one of the most commonly diagnosed and particularly challenging tumours to treat due to its location in the pelvis and close proximity to critical genitouri-nary organs. Radiotherapy (RT) is recognised as a key component of therapeutic strategy to treat RC, promoting the downsizing and downstaging of large RCs in neoadjuvant settings, although its therapeutic effect is limited due to radioresistance. Evidence from experimental and clinical studies indicates that the likelihood of achieving local tumour control by RT depends on the complete eradica-tion of cancer stem cells (CSC), a minority subset of tumour cells with stemness properties. Methods: A systematic literature review was conducted by querying two scientific databases (Pubmed and Scopus). The search was restricted to papers published from 2009 to 2021. Results: After assessing the quality and the risk of bias, a total of 11 studies were selected as they mainly focused on biomarkers predictive of RT-response in CSCs isolated from patients affected by RC. Specifically these studies showed that elevated levels of CD133, CD44, ALDH1, Lgr5 and G9a are associated with RT-resistance and poor prognosis. Conclusions: This review aimed to provide an overview of the current scenario of in vitro and in vivo studies evaluating the biomarkers predictive of RT-response in CSCs derived from RC patients

    Interleukin-30 feeds breast cancer stem cells via CXCL10 and IL23 autocrine loops and shapes immune contexture and host outcome

    Get PDF
    Background Breast cancer (BC) progression to metastatic disease is the leading cause of death in women worldwide. Metastasis is driven by cancer stem cells (CSCs) and signals from their microenvironment. Interleukin (IL) 30 promotes BC progression, and its expression correlates with disease recurrence and mortality. Whether it acts by regulating BCSCs is unknown and could have significant therapeutic implications. Methods Human (h) and murine (m) BCSCs were tested for their production of and response to IL30 by using flow cytometry, confocal microscopy, proliferation and sphere-formation assays, and PCR array. Immunocompetent mice were used to investigate the role of BCSC-derived IL30 on tumor development and host outcome. TCGA PanCancer and Oncomine databases provided gene expression data from 1084 and 75 hBC samples, respectively, and immunostaining unveiled the BCSC microenvironment. Results hBCSCs constitutively expressed IL30 as a membrane-anchored glycoprotein. Blocking IL30 hindered their proliferation and self-renewal efficiency, which were boosted by IL30 overexpression. IL30 regulation of immunity gene expression in human and murine BCSCs shared a significant induction of IL23 and CXCL10. Both immunoregulatory mediators stimulated BCSC proliferation and self-renewal, while their selective blockade dramatically hindered IL30-dependent BCSC proliferation and mammosphere formation. Orthotopic implantation of IL30-overexpressing mBCSCs, in syngeneic mice, gave rise to poorly differentiated and highly proliferating MYC + KLF4 + LAG3 + tumors, which expressed CXCL10 and IL23, and were infiltrated by myeloid-derived cells, Foxp3 + T regulatory cells and NKp46 + RORÎ 3t + type 3 innate lymphoid cells, resulting in increased metastasis and reduced survival. In tumor tissues from patients with BC, expression of IL30 overlapped with that of CXCL10 and IL23, and ranked beyond the 95th percentile in a Triple-Negative enriched BC collection from the Oncomine Platform. CIBERSORTx highlighted a defective dendritic cell, CD4 + T and Î 3δT lymphocyte content and a prominent LAG3 expression in IL30 high versus IL30 low human BC samples from the TCGA PanCancer collection. Conclusions Constitutive expression of membrane-bound IL30 regulates BCSC viability by juxtacrine signals and via second-level mediators, mainly CXCL10 and IL23. Their autocrine loops mediate much of the CSC growth factor activity of IL30, while their paracrine effect contributes to IL30 shaping of immune contexture. IL30-related immune subversion, which also emerged from computational analyses, strongly suggests that targeting IL30 can restrain the BCSC compartment and counteract BC progression

    Targeting Phosphatases and Kinases: How to Checkmate Cancer

    Get PDF
    Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille’s heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression

    IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition

    Get PDF
    The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor-positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4R\uce\ub1 antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24-cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4by inhibiting NF-\uce\ubaB. Enforced expression of DUSP4 drove conversion of metastatic cells to nonmetastatic cells. Mechanistically, RNAi-mediated attenuation of DUSP4activated the ERKand p38 MAPK pathways, increased stem-like properties, and spawned metastatic capacity. Targeting IL4 signaling sensitized breast cancer cells to anticancer therapy and strengthened immune responses by enhancing the number of IFN\uce\ub3-positive CTLs. Our results showed the role of IL4 in promoting breast cancer aggressiveness and how its targeting may improve the efficacy of current therapies

    po 298 myc favours the onset of tumour initiating cells by inducing epigenetic reprogramming of mammary epithelial cells towards a stem cell like state

    Get PDF
    Introduction Breast cancer consists of highly heterogenous tumours whose cell of origin resulted difficult to be defined. Recent findings highlighted the possibility that tumor-initiating cells (TICs) may arise from dedifferentiation of lineage-committed cells, by reactivation of multipotency in response to oncogenic insults. MYC is the most frequently amplified oncogene in breast cancer and the activation of MYC pathway has been associated with the basal-like subtype, which is characterised by poor survival and lack of a specific therapeutic strategy. Although MYC has been considered a driver oncogene in breast cancer, its mechanism of action in tumour initiation has been poorly addressed. Material and methods To evaluate the role of MYC in perturbing cell identity of somatic cells, we transduced hTERT-immortalised human mammary epithelial cells (IMEC) with a retroviral vector expressing low levels of the exogenous c-Myc. The effect of MYC overexpression was evaluated by performing morphological analysis and gene expression profiling. To verify whether MYC overexpression could enrich for cells with functional stem cell-like properties, we performed mammospheres assay. ChIP-seq analyses were performed to profile chromatin modifications and MYC binding in IMEC WT, -MYC and mammospheres. To determine whether MYC-reprogrammed IMEC were enriched for TICs, we performed in vivo injection in NOD/SCID mice and assessed long-term tumorigenic potential by performing serial transplantation assay. To assess the clinical relevance of our findings, we investigated the expression of MYC-dependent oncogenic signature in a database of breast cancer patients. Results and discussions Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. Of note, MYC-driven dedifferentiation supports the onset of a basal/stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. MYC-driven epigenetic reprogramming favours the formation and maintenance of TICs endowed with metastatic capacity. Moreover, oncogenic pathways activated by MYC-modulated enhancers are associated with basal-like breast cancer in patients with a poor prognosis. Conclusion MYC-driven tumour initiation relies on a cell reprogramming process, which is mediated by activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers

    miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance

    Get PDF
    The ErbB tyrosine kinase receptor family has been shown to have an important role in tumorigenesis, and the expression of its receptor members is frequently deregulated in many types of solid tumors. Various drugs targeting these receptors have been approved for cancer treatment. Particularly, in breast cancer, anti-Her2/EGFR molecules represent the standard therapy for Her2-positive malignancies. However, in a number of cases, the tumor relapses or progresses thus suggesting that not all cancer cells have been targeted. One possibility is that a subset of cells capable of regenerating the tumor, such as cancer stem cells (CSCs), may not respond to these therapeutic agents. Accumulating evidences indicate that miR-205-5p is significantly downregulated in breast tumors compared with normal breast tissue and acts as a tumor suppressor directly targeting oncogenes such as Zeb1 and ErbB3. In this study, we report that miR-205-5p is highly expressed in BCSCs and represses directly ERBB2 and indirectly EGFR leading to resistance to targeted therapy. Furthermore, we show that miR-205-5p directly regulates the expression of p63 which is in turn involved in the EGFR expression suggesting a miR-205/p63/EGFR regulation

    Targeting epigenetic alterations in cancer stem cells

    Get PDF
    Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by selfrenewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases

    Recapitulating thyroid cancer histotypes through engineering embryonic stem cells

    Get PDF
    Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs

    Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy

    Get PDF
    Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies

    Giorgio Vasari a Palazzo Abatellis. Percorsi del Rinascimento in Sicilia

    Get PDF
    La mostra si inserisce nell'ambito delle celebrazioni per i 500 anni della nascita di Giorgio Vasari (1511-2011), ricorrenza che, nel corso dell'anno, \ue8 stata oggetto di numerosi eventi culturali italiani e internazionali. L'iniziativa nasce dalla collaborazione tra la Biblioteca Centrale della Regione siciliana "A. Bombace", la sezione "Sfera" del Dipartimento di Architettura dell'Universit\ue0 degli Studi di Palermo, e la Galleria Interdisciplinare Regionale della Sicilia, istituzione che custodisce, nella prestigiosa sede di Palazzo Abatellis, due grandi dipinti su tavola di Vasari, costituenti le ricurve parti laterali del trittico della "Caduta della manna" realizzato nel 1545 per il refettorio di Santa Maria di Monteoliveto a Napoli. Le lunette vasariane, esposte in modo permanente dal 2009 ma ancora quasi del tutto sconosciute a studiosi e pubblico, per l'occasione sono state ricollocate secondo gli originali rapporti dimensionali con il perduto quadro centrale e poste in relazione con il disegno preparatorio dello stesso Vasari, oggi custodito presso l'Ecole nationale superieure des beaux-arts di Parigi. Il percorso analitico, che si \ue8 avvalso anche del prezioso contributo di Claudia Conforti, tra le pi\uf9 autorevoli studiose dell'artista aretino, e delle competenze tecniche dell'Associazione culturale LapiS, \ue8 stato svolto secondo tre tematiche connesse alla poliedrica attivit\ue0 vasariana e al suo contesto culturale: la pittura e l'arte del disegno, la produzione letteraria, l'architettura. Al patrimonio pittorico e grafico della Galleria, riconducibile a quella che lo stesso Vasari definisce \uabmaniera moderna\ubb, sono stati quindi associati preziosi volumi a stampa, a partire dalla rara edizione del 1568 delle "Vite de' pi\uf9 eccellenti architetti, pittori e scultori italiani", e pannelli illustrativi riferiti a opere siciliane di architetti e scultori citati nelle "Vite" vasariane, costituenti alcune pregnanti testimonianze del Rinascimento in Sicili
    corecore