33 research outputs found

    Influencia del tipo de derivado celulósico sobre la textura y la estabilidad oxidativa y térmica de oleogeles de aceite de soja

    Get PDF
    The use oleogels (defined as edible oils entrapped in a three-dimensional network employing a self-assembled structuring agent) has recently been proposed to replace saturated fat or trans-fats in foods. In this work the effects of different cellulose derivative mixtures (Avicel, ethyl cellulose and α-cellulose) on lipid stability, glass transition temperature and the texture of soybean oil oleogels were determined by employing a mixture design approach. Avicel affected lipid stability, increasing the oxidative rancidity and peroxide values of oleogels. Oleogels with higher proportions of Avicel also presented higher transition temperatures. A higher percent of ethyl cellulose and α-cellulose in the oleogel mixture resulted in a more stable system with lower oil rancidity and lower glass transition temperatures. In addition, Avicel resulted in a softer and less tacky texture, an important characteristic to consider for food applications.Recientemente, ha sido propuesto el uso de oleogeles (definido como aceites comestibles atrapados en una red tridimensional que ocupa un agente estructurante de auto-ensamblado) como substituto de grasa saturada o grasas trans en alimentos. En este trabajo el efecto de mezclas de diferentes derivados celulósicos (Avicel, etil celulosa y α-celulosa) sobre la estabilidad de lípidos, temperaturas de transición térmica y textura de oleogeles de aceite de soja fueron determinados utilizando un diseño de mezclas. Avicel afectó la estabilidad de lípidos, aumentando la rancidez oxidativa y valores de peróxido en los oleogeles. Oleogeles con mayores proporciones de Avicel también presentaron temperaturas de transición térmica más altas. Porcentajes más altos de etil celulosa y α-celulosa resultaron en un sistema más estable con menor rancidez oxidativa y menores temperaturas de transición térmica. Sin embargo, Avicel resultó en una textura más suave y menos pegajosa, una característica importante a considerar para su aplicación en alimentos

    Efecto del tipo de carragenina en emulsiones de aceite de soja/aislado de proteína de soja utilizadas como sustituto de grasa en quesos tipo panela

    Get PDF
    In order to modify the fatty acid profile of panela-type cheese (a Mexican fresh cheese), emulsified soybean oil with soy protein isolate and different carrageenan (iota, kappa or lambda) was employed as fat replacer. The replacement of milk fat in panela-type cheese resulted in higher cheese yield values and moisture content, besides a concomitant lower fat phase and higher protein content, due to a soy protein isolate in emulsified soybean oil. Fat replacement resulted in a harder but less cohesive, spring and resilient texture, where differences in texture could be attributed to the specific carrageenan-casein interactions within the rennet coagulated cheese matrix. The FTIR analysis showed that the milk fat replacement changed the fatty acid profile, also in function of the type of carrageenan employed. Lambda carrageenan containing emulsions improved moisture retention and maintained the textural properties of panela-type cheese.Para modificar el perfil de ácidos grasos de los quesos tipo panela (queso fresco popular en México), se utilizó aceite de soja emulsionado con aislado de proteína de soja y diferentes carrageninas (iota, kappa o lambda) como sustituto de la grasa. Reemplazar la grasa de la leche en el queso tipo panela resultó en mayor rendimiento quesero y mayor contenido de humedad, además de una concomitante menor fase grasa y mayor contenido de proteína, debido al aislado de proteína de soja en el aceite de soja emulsionado. La sustitución de la grasa dio como resultado una textura más dura, pero menos cohesiva, elástica y resiliente, donde estas diferencias podrían ser atribuidas a la interacción especifica entre carrageninas-caseinas en la matriz coagulada del queso. El análisis de FTIR muestra que reemplazar la grasa de la leche cambia el perfil de ácidos grasos, también en función del tipo de carragenina empleado. Las emulsiones con lambda carrageninas mejoraron la retención de humedad y mantuvieron las propiedades de textura del queso tipo panela

    Design of bio-nanosystems for oral delivery of functional compounds

    Get PDF
    Nanotechnology has been referred to as one of the most interesting topics in food technology due to the potentialities of its use by food industry. This calls for studying the behavior of nanosystems as carriers of biological and functional compounds aiming at their utilization for delivery, controlled release and protection of such compounds during food processing and oral ingestion. This review highlights the principles of design and production of bio-nanosystems for oral delivery and their behavior within the human gastrointestinal (GI) tract, while providing an insight into the application of reverse engineering approach to the design of those bio-nanosystems. Nanocapsules, nanohydrogels, lipid-based and multilayer nanosystems are discussed (in terms of their main ingredients, production techniques, predominant forces and properties) and some examples of possible food applications are given. Phenomena occurring in in vitro digestion models are presented, mainly using examples related to the utilization of lipid-based nanosystems and their physicochemical behavior throughout the GI tract. Furthermore, it is shown how a reverse engineering approach, through two main steps, can be used to design bio-nanosystems for food applications, and finally a last section is presented to discuss future trends and consumer perception on food nanotechnology.Miguel A. Cerqueira, Ana C. Pinheiro, Helder D. Silva, Philippe E. Ramos, Ana I. Bourbon, Oscar L. Ramos (SFRH/BPD/72753/2010, SFRH/BD/48120/2008, SFRH/BD/81288/2011, SFRH/BD/80800/2011, SFRH/BD/73178/2010 and SFRH/BPD/80766/2011, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE Portugal). Maria L. Flores-Lopez thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant number: 215499/310847). The support of EU Cost Actions FA0904 and FA1001 is gratefully acknowledged

    Edible bio-based nanostructures: delivery, absorption and potential toxicity

    Get PDF
    The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.Joana T. Martins, Oscar L. Ramos, Ana C. Pinheiro, Ana I. Bourbon, Helder D. Silva and Miguel A. Cerqueira (SFRH/BPD/89992/2012, SFRH/BPD/80766/2011, SFRH/BPD/101181/2014, SFRH/BD/73178/2010, SFRH/BD/81288/2011, and SFRH/BPD/72753/2010, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE, Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes," REF.NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. We also thank to the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1) and Xunta de Galicia: Agrupamento INBIOMED (2012/273) and Grupo con potencial de crecimiento. The support of EU Cost Action FA1001 is gratefully acknowledged

    Textural properties, sensory acceptance and fatty acid profile of cooked meat batters employing pumpkin seed paste or soybean oil oleogel as fat replacers

    Get PDF
    Oleogel from soybean oil and pumpkin seed paste were proposed as full replacements for pork backfat to decrease the saturated fat contents and improve the PUFA/SFA ratio in meat batters. Textural compression, along with shear and penetration tests provided similar information related to meat batter structure according to the type of fat, showing that a tougher but brittle texture was produced. Meat batters with fat replacers were darker and less red, but more yellow due to the incorporation of vegetable oil. Both hue angle (H) and saturation index (S) values increased due to changes in color components, in addition to a higher total color difference compared to the control sample. Soybean oil oleogel increased the PUFA content considerably, maintaining a total fat content close to the control sample. Pumpkin seed paste increased PUFA but also reduced to caloric content due lower fat content. Consumers preferred pumpkin seed paste samples regardless of the color difference and lower fat content. Fat replacers employed to replace pork backfat substantially modified the fatty acid profile and decreased lipid oxidation with no detrimental effects on texture or acceptance

    Agave fructans as fat and sugar replacers in ice cream: Sensory, thermal and texture properties

    No full text
    The principal aim of the present study was to investigate the feasibility of replacing fat and sugar with agave fructans to produce both low-fat, and low-fat and sugar ice cream. For this purpose, agave fructans (0–3.0%) were added to several ice cream formulations to explore relationships between their sensory perception, and their previously reported thermal and texture properties. Formulations with less than 1.2% of agave fructans contributed sensory attributes linked to the amount and size of ice crystals, such as crystallized (both texture and appearance), grainy and cold sensation. These were related to frozen water, ice fraction, enthalpy and maximum temperature, as well as hardness, melting rate and compression force. On the other hand, the samples with concentrations between 1.2 and 3.0% of agave fructans showed ice cream formulations with longer melting times, smooth, creamy and fluid texture, and with fatty sensation. These properties were directly related to low non-frozen water concentrations, high glass transition temperatures and ΔCp values, as well as textural properties, such as apparent viscosity and overrun. Even though consumers liked the samples with higher amounts of fat and sugar, all the samples showed liking values in a quite narrow range around the neutral point on the liking scale. Thus, agave fructans were able to enhance several sensory, thermal and textural properties, making them a feasible alternative as a fat and sugar replacer.The authors are grateful for the financial support of DGAPA-PAPIIT (projects IT201417 and IT201220), UNAM, Mexico. A. Pintor-Jardines thanks CONACYT (México) for her Ph.D. scholarship in the Biotechnology Postgraduate Program (grant 246848). H. Escalona-Buendia acknowledges the AGARED research network sponsored by CONACYT (No. 281618)
    corecore