1,510 research outputs found

    Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers

    Full text link
    We experimentally demonstrate that the nonlocal nature of time-bin entangled photonic qubits persists when one or two qubits of the pair are converted to polarization qubits. This is possible by implementing a novel Universal Time-Bin Qubit Analyzer (UTBA), which, for the first time, allows analyzing time-bin qubits in any basis. We reveal the nonlocal nature of the emitted light by violating the Clauser-Horne-Shimony-Holt inequality with measurement bases exploring all the dimensions of the Bloch sphere. Moreover, we conducted experiments where one qubit is transmitted over a 12.4 km underground fiber link and demonstrate the suitability of our scheme for use in a real-world setting. The resulting entanglement can also be interpreted as hybrid entanglement between different types of degrees of freedom of two physical systems, which could prove useful in large scale, heterogeneous quantum networks. This work opens new possibilities for testing nonlocality and for implementing new quantum communication protocols with time-bin entanglement.Comment: 6 pages, 5 figure

    On The Relevance Of Fair Sampling Assumption In The Recent Bell Photonic Experiments

    Full text link
    In the experimental verification of Bell's inequalities in real photonic experiments, it is generally believed that the so-called fair sampling assumption (which means that a small fraction of results provide a fair statistical sample) has an unavoidable role. Here, we want to show that the interpretation of these experiments could be feasible, if some different alternative assumptions other than the fair sampling were used. For this purpose, we derive an efficient Bell-type inequality which is a CHSH-type inequality in real experiments. Quantum mechanics violates our proposed inequality, independent of the detection-efficiency problems.Comment: 13 pages, no figure, one table. Last versio

    Device-dependent and device-independent quantum key distribution without a shared reference frame

    Full text link
    Standard quantum key distribution (QKD) protocols typically assume that the distant parties share a common reference frame. In practice, however, establishing and maintaining a good alignment between distant observers is rarely a trivial issue, which may significantly restrain the implementation of long-distance quantum communication protocols. Here we propose simple QKD protocols that do not require the parties to share any reference frame, and study their security and feasibility in both the usual device-dependent case--in which the two parties use well characterized measurement devices--as well as in the device-independent case--in which the measurement devices can be untrusted, and the security relies on the violation of a Bell inequality. To illustrate the practical relevance of these ideas, we present a proof-of-principle demonstration of our protocols using polarization entangled photons distributed over a coiled 10-km-long optical fiber. We consider two situations, in which either the fiber spool freely drifts, or randomly chosen polarization transformations are applied. The correlations obtained from measurements allow, with high probability, to generate positive asymptotic secret key rates in both the device-dependent and device-independent scenarios (under the fair-sampling assumption for the latter case).Comment: 12 pages, 11 figure

    Quantum memory for non-stationary light fields based on controlled reversible inhomogeneous broadening

    Get PDF
    We propose a new method for efficient storage and recall of non-stationary light fields, e.g. single photon time-bin qubits, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening. We briefly discuss experimental realizations of our proposal.Comment: 4 page

    Femtosecond Time-Bin Entangled Qubits for Quantum Communication

    Full text link
    We create pairs of non-degenerate time-bin entangled photons at telecom wavelengths with ultra-short pump pulses. Entanglement is shown by performing Bell kind tests of the Franson type with visibilities of up to 91%. As time-bin entanglement can easily be protected from decoherence as encountered in optical fibers, this experiment opens the road for complex quantum communication protocols over long distances. We also investigate the creation of more than one photon pair in a laser pulse and present a simple tool to quantify the probability of such events to happen.Comment: 6 pages, 7 figure
    • …
    corecore