1,996 research outputs found
Inferential mistakes in population proxies: A response to Torfing's "Neolithic population and summed probability distribution of 14Cdates"
In his paper "Neolithic population and summed probability distribution of 14C-dates" Torfing opposes the widely held principle originally proposed by Rick (1987) that variation through time in the amount of archaeological material discovered in a region will reflect variation in the size of that local human population. His argument illustrates a persistent divide in archaeology between analytical and descriptive approaches when using proxies for past population size. We critically evaluate the numerous inferential mistakes he makes, showing that his conclusion is unjustified
Control of polarization and mode mapping of small volume high Q micropillars
We show that the polarization of the emission of a single quantum dot embedded within a microcavity pillar of elliptical cross section can be completely controlled and even switched between two orthogonal linear polarizations by changing the coupling of the dot emission with the polarized photonic modes. We also measure the spatial profle of the emission of a series of pillars with
different ellipticities and show that the results can be well described by simple theoretical modeling
of the modes of an infinite length elliptical cylinder
Einstein-Podolsky-Rosen correlations of Dirac particles - quantum field theory approach
We calculate correlation function in the Einstein--Podolsky--Rosen type of
experiment with massive relativistic Dirac particles in the framework of the
quantum field theory formalism. We perform our calculations for states which
are physically interesting and transforms covariantly under the full Lorentz
group action, i.e. for pseudoscalar and vector state.Comment: 9 pages, 2 figures. Published versio
Information and The Brukner-Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation
In Brukner and Zeilinger's interpretation of quantum mechanics, information
is introduced as the most fundamental notion and the finiteness of information
is considered as an essential feature of quantum systems. They also define a
new measure of information which is inherently different from the Shannon
information and try to show that the latter is not useful in defining the
information content in a quantum object.
Here, we show that there are serious problems in their approach which make
their efforts unsatisfactory. The finiteness of information does not explain
how objective results appear in experiments and what an instantaneous change in
the so-called information vector (or catalog of knowledge) really means during
the measurement. On the other hand, Brukner and Zeilinger's definition of a new
measure of information may lose its significance, when the spin measurement of
an elementary system is treated realistically. Hence, the sum of the individual
measures of information may not be a conserved value in real experiments.Comment: 20 pages, two figures, last version. Section 4 is replaced by a new
argument. Other sections are improved. An appendix and new references are
adde
The quantum world is not built up from correlations
It is known that the global state of a composite quantum system can be
completely determined by specifying correlations between measurements performed
on subsystems only. Despite the fact that the quantum correlations thus suffice
to reconstruct the quantum state, we show, using a Bell inequality argument,
that they cannot be regarded as objective local properties of the composite
system in question. It is well known since the work of J.S. Bell, that one
cannot have locally preexistent values for all physical quantities, whether
they are deterministic or stochastic. The Bell inequality argument we present
here shows this is also impossible for correlations among subsystems of an
individual isolated composite system. Neither of them can be used to build up a
world consisting of some local realistic structure. As a corrolary to the
result we argue that entanglement cannot be considered ontologically robust.
The argument has an important advantage over others because it does not need
perfect correlations but only statistical correlations. It can therefore easily
be tested in currently feasible experiments using four particle entanglement.Comment: Published version. Title change
MR-PheWAS:Hypothesis prioritization among potential causal effects of body mass index on many outcomes, using Mendelian randomization
Observational cohort studies can provide rich datasets with a diverse range of phenotypic variables. However, hypothesis-driven epidemiological analyses by definition only test particular hypotheses chosen by researchers. Furthermore, observational analyses may not provide robust evidence of causality, as they are susceptible to confounding, reverse causation and measurement error. Using body mass index (BMI) as an exemplar, we demonstrate a novel extension to the phenome-wide association study (pheWAS) approach, using automated screening with genotypic instruments to screen for causal associations amongst any number of phenotypic outcomes. We used a sample of 8,121 children from the ALSPAC dataset, and tested the linear association of a BMI-associated allele score with 172 phenotypic outcomes (with variable sample sizes). We also performed an instrumental variable analysis to estimate the causal effect of BMI on each phenotype. We found 21 of the 172 outcomes were associated with the allele score at an unadjusted p < 0.05 threshold, and use Bonferroni corrections, permutation testing and estimates of the false discovery rate to consider the strength of results given the number of tests performed. The most strongly associated outcomes included leptin, lipid profile, and blood pressure. We also found novel evidence of effects of BMI on a global self-worth score
Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors.
Finding individual-level data for adequately-powered Mendelian randomization analyses may be problematic. As publicly-available summarized data on genetic associations with disease outcomes from large consortia are becoming more abundant, use of published data is an attractive analysis strategy for obtaining precise estimates of the causal effects of risk factors on outcomes. We detail the necessary steps for conducting Mendelian randomization investigations using published data, and present novel statistical methods for combining data on the associations of multiple (correlated or uncorrelated) genetic variants with the risk factor and outcome into a single causal effect estimate. A two-sample analysis strategy may be employed, in which evidence on the gene-risk factor and gene-outcome associations are taken from different data sources. These approaches allow the efficient identification of risk factors that are suitable targets for clinical intervention from published data, although the ability to assess the assumptions necessary for causal inference is diminished. Methods and guidance are illustrated using the example of the causal effect of serum calcium levels on fasting glucose concentrations. The estimated causal effect of a 1 standard deviation (0.13 mmol/L) increase in calcium levels on fasting glucose (mM) using a single lead variant from the CASR gene region is 0.044 (95 % credible interval -0.002, 0.100). In contrast, using our method to account for the correlation between variants, the corresponding estimate using 17 genetic variants is 0.022 (95 % credible interval 0.009, 0.035), a more clearly positive causal effect.We thank all EPIC participants and staff for their contribution to the study. We thank staff from the Technical, Field Epidemiology and Data Functional Group Teams of the MRC Epidemiology Unit in Cambridge, UK, for carrying out sample preparation, DNA provision and quality control, genotyping and data-handling work. Funding for the biomarker measurements in the random subcohort was provided by grants to EPIC-InterAct from the European Community Framework Programme 6 (Integrated Project LSHM-CT-2006-037197) and to EPIC-Heart from the Medical Research Council and British Heart Foundation (Joint Award G0800270). Stephen Burgess is supported by the Wellcome Trust (Grant Number 100114). Simon G. Thompson is supported by the British Heart Foundation (Grant Number CH/12/2/29428). No specific funding was received for the writing of this manuscript.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10654-015-0011-
Types of quantum information
Quantum, in contrast to classical, information theory, allows for different
incompatible types (or species) of information which cannot be combined with
each other. Distinguishing these incompatible types is useful in understanding
the role of the two classical bits in teleportation (or one bit in one-bit
teleportation), for discussing decoherence in information-theoretic terms, and
for giving a proper definition, in quantum terms, of ``classical information.''
Various examples (some updating earlier work) are given of theorems which
relate different incompatible kinds of information, and thus have no
counterparts in classical information theory.Comment: Minor changes so as to agree with published versio
Formulation of the uncertainty relations in terms of the Renyi entropies
Quantum mechanical uncertainty relations for position and momentum are
expressed in the form of inequalities involving the Renyi entropies. The proof
of these inequalities requires the use of the exact expression for the
(p,q)-norm of the Fourier transformation derived by Babenko and Beckner.
Analogous uncertainty relations are derived for angle and angular momentum and
also for a pair of complementary observables in N-level systems. All these
uncertainty relations become more attractive when expressed in terms of the
symmetrized Renyi entropies
- …
