63 research outputs found

    Rods progressively escape saturation to drive visual responses in daylight conditions

    Get PDF
    Rod and cone photoreceptors support vision across large light intensity ranges. Rods, active under dim illumination, are thought to saturate at higher (photopic) irradiances. The extent of rod saturation is not well defined; some studies report rod activity well into the photopic range. Using electrophysiological recordings from retina and dorsal lateral geniculate nucleus of cone-deficient and visually intact mice, we describe stimulus and physiological factors that influence photopic rod-driven responses. We find that rod contrast sensitivity is initially strongly reduced at high irradiances, but progressively recovers to allow responses to moderate contrast stimuli. Surprisingly, rods recover faster at higher light levels. A model of rod phototransduction suggests that phototransduction gain adjustments and bleaching adaptation underlie rod recovery. Consistently, exogenous chromophore reduces rod responses at bright background. Thus, bleaching adaptation renders mouse rods responsive to modest contrast at any irradiance. Paradoxically, raising irradiance across the photopic range increases the robustness of rod responses.Peer reviewe

    Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina

    Get PDF
    International audienceWe have investigated the ontogeny of light-driven responses in mouse retinal ganglion cells (RGCs). Using a large-scale, high-density multielectrode array, we recorded from hundreds to thousands of RGCs simultaneously at pan-retinal level, including dorsal and ventral locations. Responses to di erent contrasts not only revealed a complex developmental pro le for ON, OFF and ON-OFF responses, but also unveiled di erences between dorsal and ventral RGC responses. At eye-opening, dorsal RGCs of all types were more responsive to light, perhaps indicating an environmental priority to nest viewing for pre-weaning pups. The developmental pro le of ON and OFF responses exhibited antagonistic behaviour, with the strongest ON responses shortly after eye-opening, followed by an increase in the strength of OFF responses later on. Further, we found that with maturation receptive eld (RF) center sizes decrease, spike-triggered averaged responses to white noise become stronger, and centers become more circular while maintaining di erences between RGC types. We conclude that the maturation of retinal functionality is not spatially homogeneous, likely re ecting ecological requirements that favour earlier maturation of the dorsal retina
    corecore